Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:Chloroplast, the energy organelle unique to plants and green algae, performs a wide range of functions including photosynthesis and biosynthesis of metabolites. However, as the most important tuber crop worldwide, the potato (Solanum tuberosum) chloroplast proteome has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins, including 51 proteins encoded by the chloroplast genome, were identified in the chloroplast proteome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. A total of 16 proteins were selected for evaluating the prediction result by transient fluorescence assay and confirmed that 14 of them were distributed on distinct internal compartments of the chloroplast. In addition, 136 phosphorylation sites were identified in 61 proteins encoded by chloroplast proteome. Furthermore, by a comparative analysis between chloroplast and previously reported amyloplast proteomes, we reconstruct the starch metabolic pathways in the two different types of plastids. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of photosynthesis pathway and starch metabolism.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: Leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 99, 391, 74, and 543 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_C vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a bicolor leaf kale. DEGs related to anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by anthocyanin biosynthesis, chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for bicolor leaf in ornamental kale and other plants.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 1028, 4323, 428, and 1033 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_S vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’, ‘carbon fixation in photosynthetic organisms’, ‘porphyrin and chlorophyll metabolism’ and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a variegated leaf kale. DEGs related to chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for leaf variegation in ornamental kale and other plants.
Project description:Influence of DBMIB or DCMU influence on chloroplast transcription. Both solution treatments were compared to reference (non treated leaves)
Project description:The regulator for chloroplast biogenesis (rcb) mutant was identified as a mutant defective in phytochrome-mediated chloroplast biogenesis. The rcb mutant has long hypocotyl and albino phenotypes. RCB initiates chloroplast biogenesis in the nucleus by promoting the degradation of the master repressors for chloroplast biogenesis, the PIFs (Phytochrome Interacting Factors). To understand how RCB regulates the expression of PIF-regulated genes, we performed genome-wide expression analysis of RCB-dependent genes using a rcb-10 null allele.