Project description:Noble rot results from atypical infections of ripe grape berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and accumulation of secondary metabolites that enhance wine grape quality. Noble rot-infected berries of Sémillon, a white-skinned variety, were collected over three years from a commercial vineyard at the same time fruit were harvested for botrytized wine production. Transcriptomic and metabolomic data were integrated to identify pathways associated with distinct stages of noble rot. Botrytis induced the expression of known key regulators of pathways in secondary metabolism associated with berry ripening. The activation by Botrytis during noble rot of metabolic pathways associated with berry ripening was further supported by comparisons with transcriptomes of red-skinned varieties at véraison. A prominent and common outcome of noble rot and berry ripening was the enhancement of the phenylpropanoid metabolism. Induced synthesis of stilbenes, flavonoids, and anthocyanins was supported by both transcriptional and metabolite analyses. Enzyme assays and targeted gene expression analyses of samples from the three distinct years confirmed that the activation of central and peripheral phenylpropanoid pathways is a consistent hallmark of noble rot. Finally, we show that the impact of noble rot on grape metabolism is still detectable in botrytized wines. These results demonstrate that despite the late stage of terminal senescence of a plant organ, a biotic stress can cause a major reprogramming of plant metabolism leading, in case of noble rot, to the synthesis of important metabolites for grape berry flavor and aroma.
Project description:Purpose: Microarray technologies provide a unique opportunity to deeply investigate the molecular mechanisms involved in plant-pathogen interaction. Botrytis cinerea, is the agent of grapevine grey mould, but in yet uncharacterized environmental conditions, a latent infection can occur determining favourable metabolic and physico-chemical berry modifications which possibly contribute to the typical aromas of “passito” wines (“noble rot”). The present project aims at the identification of the grapevine responses to B. cinerea during fungal colonization in the latent form, in comparison with control berries. Methods: A total of 150 untreated berries were sampled as time 0 of the experiment. Moreover, 300 healthy berries have been artificially inoculated one by one with B. cinerea by injecting conidia under berry skin, in controlled conditions, reproducing an early stage (T1) and a late stage (T2) of noble rot pourri plein. Control samples (300 berries) have been inoculated with water and sampled at the same time of infected berries. The microarray experiments on T0 and healthy or infected samples in biological triplicate resulted in 15 samples to be analyzed (Agilent-048771 4x44K Grape all custom microarray chip; Agilent Technologies, Santa Clara, CA, USA). Conclusions: This work identified important molecular mechanisms involved in Botrytis cinerea colonization of grapevine berries during the noble rot infection.
Project description:Purpose: High throughput sequencing technologies provide a unique opportunity to deeply investigate the molecular mechanisms involved in plant-pathogen interaction. Botrytis cinerea, is the agent of grapevine grey mould, but in yet uncharacterized environmental conditions, a latent infection can occur determining favourable metabolic and physico-chemical berry modifications which possibly contribute to the typical aromas of “passito” wines (“noble rot”). The present project aims at the identification of the genes deployed by B. cinerea during grape berries colonization in the latent form, in comparison with the saprophytic growth in vitro. Methods: A total of 300 healthy berries have been artificially inoculated one by one with B. cinerea by injecting conidia under berry skin, in controlled conditions, reproducing the pourri plein stage of noble rot. Control samples (300 berries) have been inoculated with water. The saprophytic growth was obtained in liquid nutrient medium in laboratory flasks, and the mycelium collected by filtration. The RNA-sequencing experiments on healthy or infected samples in biological triplicate resulted in 27 data sets to be analyzed (Illumina NextSeq500 paired-end sequencing; 533.779.730 total reads, 150 Gb of data). Conclusions: This work identified important molecular mechanisms involved in Botrytis cinerea colonization of grapevine berries during the noble rot infection.
Project description:White grape (Vitis vinifera cv. Furmint) berry samples subjected to natural noble rot were collected in a vineyard in Mád, Hungary (Tokaj wine region). Raw data include grapevine and Botrytis cinerea sequence reads.
Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:Differences in gene expression were compared for grape berry flesh and skin. The aim of this analysis is to identify key genes that are differentially expressed in the skin or flesh during berry development. Keywords: Tissue specific gene expression analysis
Project description:In commercial fruit production, synchronized ripening and stable shelf life are important properties. The loosely clustered or non-bunching muscadine grape has unrealized potential as a disease resistant cash crop, but requires repeated hand harvesting due to its unsynchronized or long or heterogeneous maturation period. Genomic research can be used to identify the developmental and environmental factors that control fruit ripening and postharvest quality. This study coupled the morphological, biochemical, and genetic variations between ‘Carlos’ and ‘Noble’ muscadine grape cultivars with RNA-sequencing analysis during berry maturation. The levels of antioxidants, anthocyanins, and titratable acids varied between the two cultivars during the ripening process. We also identified new genes, pathways, and regulatory networks that modulated berry ripening in muscadine grape. These findings may help develop a large-scale database of the genetic factors of muscadine grape ripening and postharvest profiles and allow the discovery of the factors underlying the ripeness heterogeneity at harvest. These genetic resources may allow us to combine applied and basic research methods in breeding to improve table and wine grape ripening uniformity, quality, stress tolerance, and postharvest handling and storage.
Project description:Flavonoid biosynthesis in grape berry skin is affected by environmental factors such as light and temperature. However, the components of the light-signaling and low-temperature-induced ABA signaling networks related to flavonoid accumulation in grape berry skin have not been fully elucidated. To clarify details of the possible light- and ABA-related signal transduction networks, we performed comprehensive transcriptome analysis using grape berries cultured under different light and temperature conditions. We identified 40 light-inducible genes, 55 low-temperature-inducible genes, and 34 genes induced by light plus low temperature.
Project description:We used Affymetrix microarray analyses of thirty-two individual Vitis vinifera cv. Cabernet Sauvignon berries sampled from two clusters at fifty-percent ripening initiation. By delineating four developmental stages of ripening initiation, we demonstrate that color is a statistically significant indicator of transcriptional state during ripening initiation. We report on clustered gene expression patterns which were mined for genes annotated with signal transduction functions in order to advance regulatory network modeling of ripening initiation in grape berries. We also demonstrated that gene expression does not differ statistically significantly at a global level in berries sampled from different plants or different positions in a cluster. Keywords: time course (berry development series)