Project description:We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardised Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects.
Project description:We report transcriptome profiling of middle internode tissues from four development stages and three soil moisture readings representing progressive drought stress in sweet sorghum. Sequencing of 14 libraries (two biological replicates for each stage). Each replicate yielded an average of 86 million reads per sample for developmental stages and drought stressed samples yielded an average of 74 million reads per sample .
Project description:We report transcriptome profiling of middle internode tissues from four development stages and three soil moisture readings representing progressive drought stress in grain sorghum. Sequencing of 14 libraries (two biological replicates for each stage). Each replicate yielded an average of 86 million reads per sample for developmental stages and drought stressed samples yielded an average of 74 million reads per sample .
Project description:We report transcriptome profiling of middle internode tissues from four development stages and three soil moisture readings representing progressive drought stress in sweet sorghum. Sequencing of 14 libraries (two biological replicates for each stage). Each replicate yielded an average of 86 million reads per sample for developmental stages and drought stressed samples yielded an average of 74 million reads per sample .
Project description:The present invention relates to methods for determining soil quality, and especially soil pollution, using the invertebrate soil organism Folsomia candida also designated as springtail. Specifically, the present invention relates to a method for determining soil quality comprising: contacting Folsomia Candida with a soil sample to be analysed during a time period of 1 to 5 days; isolating said soil contacted Folsomia Candida; extracting RNA from said isolated soil contacted Folsomia Candida; determing a gene expression profile based on said extracted RNA using microarray technology; comparing said gene expression profile with a reference gene expression profile; and determing soil quality based expression level differences between said gene expression profile and said control expression profile.