Project description:In order to study the mechanism of CCCP combined with DHA treatment in uveal melanoma, we applied RNA-seq to identify its target genes in ocular melanoma.
Project description:G protein alpha q and 11 are mutated in 80% of uveal melanoma. We observed that treatment with the BRD4 inhibitor JQ1 resulted in different phenotypic responses in G-protein mutant uveal melanoma cell lines and wild type uveal melanoma cell lines. We used microarrarys to profile the gene expression changes occuring in wild type and mutant cell lines in response to treament with JQ1 Uveal melanoma cells were profiled in triplicate on Affymetrix Human Genome U133A 2.0 Array arrays per manufacturer's instructions
Project description:To disclose the regulatory role of H3K79me2 in gene expression, we performed RNA-seq of cells treated with DOT1L inhibitor or not and RNA-seq of normal and uveal melanoma cells.
Project description:Karyotyping by SNP array of primary uveal melanoma samples, uveal melanoma cell lines and normal controls The Human660WQuad v1.0 DNA Analysis Bead Chip and kit were used for high resolution molecular karyotyping of DNA isolated from snap-frozen primary uveal melanoma tissue isolated from enucleated eyes.
Project description:In this study, we conducted whole-transcriptome sequencing in five primary Uveal Melanoma and four adjacent tissues to uncover key dysregulated the gene-regulatory circuits in Uveal Melanoma.
Project description:Genome wide DNA methylation profiling of primary uveal melanoma cells, normal uveal melanocytes, neural crest stem cells, embryonic stem cells and uveal melanoma cell lines. The Illumina Infinium 27k Human DNA methylation Beadchip Rev B was used to obtain DNA methylation profiles across approximately 27,000 CpGs in the samples. Samples included 58 primary UM, 3 NUM and NCSC controls and 2 cell lines. Bisulphite converted DNA from the 63 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip Rev B
Project description:G protein alpha q and 11 are mutated in 80% of uveal melanoma. We observed that treatment with the BRD4 inhibitor JQ1 resulted in different phenotypic responses in G-protein mutant uveal melanoma cell lines and wild type uveal melanoma cell lines. We used microarrarys to profile the gene expression changes occuring in wild type and mutant cell lines in response to treament with JQ1
Project description:Despite advances in surgery and radiotherapy of uveal melanoma (UM), many patients develop distant metastases that poorly respond to therapy. Improved therapies for the metastatic disease are therefore urgently needed. Expression of the epidermal growth factor receptor (EGFR), a target of kinase inhibitors and humanized antibodies in use for several cancers, had been reported. 48 human UMs were analyzed by expression profiling. Evidence for signaling in tumors was obtained through the application of a UM-specific EGF signature. The EGFR specific kinase inhibitor, Gefitinib, and the humanized monoclonal antibody, Cetuximab, were tested for their effect on EGFR signaling. Natural killer cell mediated antibody-dependent cellular cytotoxicity (ADCC) and TNF-alpha release was analyzed for Cetuximab. EGFR appears suited as a novel molecular drug target for therapy of uveal melanoma. Gene expression profiles of 19 unique samples from uveal melanoma patients were measured.
Project description:Uveal melanoma is an aggressive cancer that metastasizes to the liver in about half of patients, being at that time almost always fatal. Identification of patients at high risk of metastases may provide indication for a frequent follow-up for early detection of metastases and treatment. The analysis of the gene expression profiling of primary human uveal melanomas showed high expression of SDCBP (encoding for syndecan-binding protein-1 or syntenin-1), which appeared higher in patients with recurrence, whereas expression of syndecans was lower and unrelated to progression. Moreover, we found that high expression of SDCBP gene was related to metastatic progression in two additional independent dataset of uveal melanoma patients. More importantly, immunohistochemistry showed that high expression of syntenin-1 protein in primary tumours was significantly related to metastatic recurrence in our cohort of patients. Syntenin-1 expression was confirmed by RT-PCR, immunofluorescence and immunohistochemistry in cultured uveal melanoma cells or primary tumours. A pseudo-metastatic model of uveal melanoma to the liver was developed in NOD/SCID/IL2R null mice and the study of syntenin-1 expression in primary and metastatic lesions revealed higher syntenin-1 expression in metastases. The inhibition of SDCBP expression by siRNA impaired the ability of uveal melanoma cells to migrate in a woundâhealing assay. These results suggest that SDCBP is involved in uveal melanoma progression and that it represents a candidate molecular marker of metastases and a potential therapeutic target. Gene expression profiles of 29 unique samples from uveal melanoma patients were measured.