Project description:Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections.
Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:The R-loop is a common chromatin feature presented from prokaryotic to eukaryotic genomes and has been revealed to be involved in multiple cellular processes and associated with many human diseases. Here, we take the advantage of our recently developed ssDRIP-seq method to profile genome-wide R-loop levels and provided a first-hand R-loop atlas of Rice (Oryza sativa) at different developmental stages.
Project description:Examination of 3 tissue types in Oryza glabberima (accession CG14) by high throughput sequencing for small RNA discovery and expression profiling
Project description:Comparative transcriptome sequencing in leaf and root tissues of Control and Salt-treated Oryza sativa generated 52.2 and 17.29 million high-quality reads.
Project description:Iron toxicity is one of the most common mineral disorders affecting Oryza sativa production in flooded lowland fields. Efforts have been made to develop new rice varieties tolerant to Fe toxicity (+Fe). Oryza meridionalis is an endemic from Northern Australia and grows in regions with Fe rich soils, which may provide Fe tolerance genes and mechanisms that can be used for adaptive breeding. Aiming to understand tolerance mechanisms in rice, we screened a population of interspecific introgression lines (IL) from a cross between O. sativa and O. meridionalis for the identification of QTLs contributing to Fe excess tolerance. Six putative QTLs were identified. A line carrying one introgression from O. meridionalis on chromosome 9 associated with one QTL for leaf bronzing score was identified as tolerant in terms of lipid peroxidation and electrolyte leakage despite presenting very high shoot Fe concentrations. Further physiological, biochemical, ionomic and transcriptomic analyses showed that the IL tolerance could be partly explained by Fe partitioning between the leaf sheath and culm. After the in silico construction of an interspecific hybrid genome to map the sequences from transcriptomic analysis, we identified 47 and 27 genes from O. meridionalis up and down-regulated, respectively, by Fe treatment on the tolerant IL. Among possible genes associated with shoot-based tolerance, we identified metallothionein-like proteins, genes from glutathione S-transferase family and transporters from ABC and Major Facilitator Superfamily. This is the first work to demonstrate that introgressions of O. meridionalis in O. sativa genome confer increased tolerance to +Fe
Project description:We investigate the role of root-associated Actinobacteria in promoting host fitness under drought stress in two plants important to the DOE mission of sustainable biofuels: Sorghum bicolor and Oryza sativa.
The work (proposal:https://doi.org/10.46936/10.25585/60001083) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.