Project description:Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.
Project description:Investigation of whole genome gene expression level changes in laryngeal squamous carcinoma cell line TU177 in response to overexpressed miR-145-5p. Differentially expressed protein-coding genes in the human laryngeal squamous carcinoma cells TU177 overexpressing miR-145-5p were identified by microarray analysis.
Project description:OBJECTIVE: To investigate the differentially expressed genes related to the chemosensitivity of laryngeal squamous cell carcinoma (LSCC)by microarrays arrays. METHODS: 1. A total number of 11 patients who underwent induction chemotherapy for primary hypopharyngeal squamous cell carcinoma (7 patients are sensitive to chemotherapy ,and others are not) were recruited for microarray and miRNA array gene expression analysis 2. Bioinformatics analysis of differentially expressed genes screened by microarrays : The differential gene cluster analysis was applied in biological processes, cellular components and molecular functions by GO database; The differential gene enrichment analysis was applied in signaling pathways by KEGG database, and the differentially expressed and biologically meaningful core genes would be screened. RESULTS: 1. Analyzed by microarrays, there were 1554 genes significantly related to the sensitivity to chemotherapy; Among these 1554genes, 777 showed a higher expression in the tissue from patients who are sensitive to chemotherapy , while 785 presented the contrasting pattern. CONCLUSIONS: The research revealed a gene expression signature of chemosensitivity in laryngeal squamous cell carcinoma by microarrays arrays. The result will contribute to the understanding of the molecular basis of laryngeal squamous cell carcinoma and help to improve diagnosis and treatment.
Project description:OBJECTIVE: To investigate the differentially expressed genes related to the chemosensitivity of laryngeal squamous cell carcinoma ï¼LSCCï¼by microarrays arrays. METHODS: 1. A total number of 11 patients who underwent induction chemotherapy for primary hypopharyngeal squamous cell carcinoma (7 patients are sensitive to chemotherapy ,and others are not) were recruited for microarray and miRNA array gene expression analysis 2. Bioinformatics analysis of differentially expressed genes screened by microarrays : The differential gene cluster analysis was applied in biological processes, cellular components and molecular functions by GO database; The differential gene enrichment analysis was applied in signaling pathways by KEGG database, and the differentially expressed and biologically meaningful core genes would be screened. RESULTS: 1. Analyzed by microarrays, there were 1554 genes significantly related to the sensitivity to chemotherapy; Among these 1554genes, 777 showed a higher expression in the tissue from patients who are sensitive to chemotherapy , while 785 presented the contrasting pattern. CONCLUSIONS: The research revealed a gene expression signature of chemosensitivity in laryngeal squamous cell carcinoma by microarrays arrays. The result will contribute to the understanding of the molecular basis of laryngeal squamous cell carcinoma and help to improve diagnosis and treatment. 1. A total number of 11 patients who underwent induction chemotherapy for primary hypopharyngeal squamous cell carcinoma (7 patients are sensitive to chemotherapy ,and others are not) were recruited for microarray and miRNA array gene expression analysis 2. Bioinformatics analysis of differentially expressed genes screened by microarrays : The differential gene cluster analysis was applied in biological processes, cellular components and molecular functions by GO database; The differential gene enrichment analysis was applied in signaling pathways by KEGG database, and the differentially expressed and biologically meaningful core genes would be screened.
Project description:To understanding the miRNA expression profiling of cancer stem cells of laryngeal squamous carcinoma, the total RNA of CD133+CD44+ laryngeal cancer stem cells (isolated from LSCC cell line TU-177, named TDP), CD133-CD44- cells (TDN) and parental TU-177 (unsorted TU-177 cells, named TPT) was extracted, followed by miRNA sequencing. Differentially expressed miRNAs were identified.
Project description:Laryngeal squamous cell carcinoma (LSCC) is a common form of head and neck cancer with poor prognosis. The spindle and kinetochore associated complex subunit 3 (SKA3) protein was upregulated in LSCC and associated with poor prognosis. To understand mechanism of SKA3 regulation in LSCC, we performed high throughout transcriptome sequencing to identify SKA3-regulated genes.