Project description:Pot grown plants of Arabidopsis thaliana, Cardamine hirsuta, Cardamine pratensis, Rorippa palustris and Rorippa sylvestris where completely submerged under ambient light conditions. After 24 and 48 hours the shoots were harvested for expression analysis. Differential expression analysis, taking into account unsubmerged control plants revealed that the Rorippa genus had a pronounced down regulation of the cell cycle whereas the Cardamine had an attenuated response to submergence.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
2022-12-13 | GSE220489 | GEO
Project description:The complete chloroplast genome of Abeliophyllum distichum f. lilacinum Nakai (Oleaceae)
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:Chloroplast, the energy organelle unique to plants and green algae, performs a wide range of functions including photosynthesis and biosynthesis of metabolites. However, as the most important tuber crop worldwide, the potato (Solanum tuberosum) chloroplast proteome has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins, including 51 proteins encoded by the chloroplast genome, were identified in the chloroplast proteome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. A total of 16 proteins were selected for evaluating the prediction result by transient fluorescence assay and confirmed that 14 of them were distributed on distinct internal compartments of the chloroplast. In addition, 136 phosphorylation sites were identified in 61 proteins encoded by chloroplast proteome. Furthermore, by a comparative analysis between chloroplast and previously reported amyloplast proteomes, we reconstruct the starch metabolic pathways in the two different types of plastids. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of photosynthesis pathway and starch metabolism.
2022-08-12 | PXD033047 | Pride
Project description:The complete chloroplast genome of Persicaria maackiana (Regel) Nakai ex T. Mori in Korea
| PRJNA826290 | ENA
Project description:The complete chloroplast genome of Campanula takesimana Nakai from Dokdo Island in Korea (Campanulaceae)
Project description:Epigenetic modification plays important roles in plant and animal development. DNA methylation can impact the transposable element (TE) silencing, gene imprinting and regulate gene expression.Through a genome-wide analysis, DNA methylation peaks were respectively characterized and mapped in maize embryo and endosperm genome. Distinct methylation level across maize embryo and endosperm was observed. The maize embryo genome contained more DNA methylation peaks than endosperm. However, the endosperm chloroplast genome contained more DNA methylation peaks to compare with the embryo chloroplast genome. DNA methylation regions were characterized and mapped in genome. More CG island (CGI) shore are methylated than CGI in maize suggested that DNA methylation level is not positively correlated with CpG density. The DNA methylation occurred more frequently in the promoter sequence and transcriptional termination region (TTR) than other regions of the genes. The result showed that 99% TEs we characterized are methylated in maize embryo, but some (34.8%) of them are not methylated in endosperm. Maize embryo and endosperm exhibit distinct pattern/level of methylation. The most differentially methylated two regions between embryo and endosperm are High CpG content promoters (HCPs) and high CpG content TTRs (HCTTRs). DNA methylation peaks distinction of mitochondria and chloroplast DNA were less than the nucleus DNA. Our results indicated that DNA methylation is associated with the gene silencing or gene activation in maize endosperm and embryo. Many genes involved in embryogenesis and seed development were found differentially methylated in embryo and endosperm. We found 17 endosperm-specific expressed imprinting genes were hypomethylated in endosperm and were hypermethylated in embryo. The expression of a maize DEMETER -like (DME-like) gene and MBD101 gene (MBD4 homolog) which direct bulk genome DNA demethylation were higher in endosperm than in embryo. These two genes may be associated with the distinct methylation level across maize embryo and endosperm.The methylomes of maize embryo and endosperm was obtained by MeDIP-seq method. The global mapping of maize embryo and endosperm methylation in this study broadened our knowledge of DNA methylation patterns in maize genome, and provided useful information for future studies on maize seed development and regulation of metabolic pathways in different seed tissues. Examination of DNA methylated modifications in 2 maize tissues.