Project description:Capsicum spp. (hot peppers) demonstrate a range of interesting bioactive properties spanning anti-inflammatory, antioxidant, and antimicrobial activities. While several species within the genus are known to produce antimicrobial peptides (AMPs), AMP sequence mining of genomic data indicates this space remains largely unexplored. Herein, in silico AMP predictions are paired with peptidomics to identify novel AMPs from the interspecific hybrid ghost pepper (Capsicum chinense x frutescens). AMP prediction algorithms reveal 115 putative AMPs within the Capsicum chinense genome of which 14 were identified in the aerial tissue peptidome. PepSAVI-MS, de novo sequencing, and complementary approaches were used to fully molecularly characterize two novel AMPs, CC-AMP1 and CC-AMP2, including elucidation of post-translational modifications and disulfide bond connectivity. Both CC-AMP1 and CC-AMP2 have little homology with known AMPs and exhibit low µM antimicrobial activity against gram-negative bacteria including Escherichia coli and Klebsiella pneumoniae. These findings demonstrate the complementary nature of peptidomics, bioactivity-guided discovery, and bioinformatics-based investigations to more fully characterize plant AMP profiles.
2021-08-13 | PXD024605 | Pride
Project description:Aralia genome skimming sequencing data
Project description:Profiling of small RNAs identified a total of 359 and 357 conserved; and 490 and 155 novel miRNAs in C. chinense and C. frutescens, respectively. Based on the sequence similarity observed on alignment with already reported plant miRNAs, conserved and novel miRNAs were identified in both the species. The target prediction analysis reveals vital role of miRNAs in regulating genes involved in transcriptions, protein modification, signal transduction and metabolism. Several miRNAs were expressed in a tissue-specific/preferential manner indicating their involvement in tissue/organ development.
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 1028, 4323, 428, and 1033 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_S vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’, ‘carbon fixation in photosynthetic organisms’, ‘porphyrin and chlorophyll metabolism’ and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a variegated leaf kale. DEGs related to chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for leaf variegation in ornamental kale and other plants.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of leaf color at different development stages. The goals of this study are to compare anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: Leaf mRNA profiles of 12 RNA sequencing libraries (S1, S2, S3_S, and S3_C) were generated by deep sequencing, in triplicate, using an Illumina HiSeq 4000 system. After removing reads of low quality, those that remained were mapped to the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) using the HISAT package, allowing for a maximum of two mismatches and multiple alignments per read (up to 20 by default). qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 571.74 million sequence reads per sample to the the reference genome (ftp://ftp.ensemblgenomes.org/pub/release-38/plants/genbank/brassica_oleracea/) and identified 99, 391, 74, and 543 DEGs were detected in pairwise comparison (S2 vs. S1, S3_S vs. S2, S3_C vs. S2, and S3_S vs. S3_C, respectively). The DEGs were associated with ‘photosynthesis’and other pathways in the Kyoto Encyclopedia of Genes and Genomes database; DEGs related to chloroplast organization were identified in the Gene Ontology analysis. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular basis for leaf variegation in ornamental kale and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of a bicolor leaf kale. DEGs related to anthocyanin biosynthesis, chlorophyll metabolism and chloroplast organization were detected. These results demonstrate that leaf color at different stages of development is influenced by anthocyanin biosynthesis, chloroplast and pigment metabolism, providing a foundation for investigating the molecular basis for bicolor leaf in ornamental kale and other plants.