Project description:The ability to sense sour provides an important sensory signal to prevent the ingestion of unripe, spoiled or fermented foods. Taste and somatosensory receptors in the oral cavity trigger aversive behaviors in response to acid stimuli. Here we show that the ion channel Otopetrin-1, a proton-selective channel normally involved in the sensation of gravity in the vestibular system, is essential for sour-sensing in the taste system. We demonstrate that a knockout of Otop1 eliminates acid responses from sour-sensing taste-receptor-cells (TRCs). In addition, we show that mice engineered to express otopetrin-1 in sweet TRCs now have sweet cells that also respond to sour stimuli. Next, we genetically identified the taste ganglion neurons mediating each of the five basic taste qualities, and demonstrate that sour taste uses its own dedicated labeled line from TRCs in the tongue to finely tuned taste neurons in the brain to trigger aversive behaviors.
Project description:Viromes of sour and sweet cherry trees in Hungarian germ line collections were surveyed using small RNA HTS as an unbiased method. RNA from leaf samples of different cultivars were purified and used to produce seven pools from which small RNA HTS libraries were prepared. The sequenced reads were analyzed using bioinformatic methods to revel the presence of viruses in the samples. Presence of the viruses were validated using RT-PCR.
Project description:The sarcosine oxidase locus is controlled by GbdR and SouR independently induced by glycine betaine and sarcosine, respectively. The goal of this study was to identify the members of the SouR regulon. Therefore, the comparison strains were a gbdR mutant and a gbdRsouR double mutant. The conditions for inclusion in the souR regulon were: (i) called present in the array, (ii) changed more than 2.5-fold in signal in a statistically significant manner, (iii) altered in the presence of sarcosine and dependent on souR.
Project description:Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). In the current study, global gene expression between SPVD affected plants and virus-tested control plants (VT) were compared in the susceptible ‘Beauregard’ and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13 and 17 days post inoculation (DPI).
Project description:To screen genes related to the development of sweet potato tuberous roots, the high throughput sequencing of different stages of sweet potato tuberous roots was performed. The fibrous roots (FR; roots at 20 dap), developing tuberous roots (DR; roots at 60 dap) and mature tuberous roots (MR; roots at 120 dap) of Ipomoea batatas (L.) Taizhong 6 and MBP3 overexpressed lines were used for transcriptome analysis. Totally, we identified 5488 differentially expressed genes between different stage tuberous roots of Taizhong6 and 14312 differentially expressed genes between the tuberous roots of Taizhong6 and MBP3 overexpressed lines, by calculating the gene FPKM in each sample and conducting differential gene analysis. This study provides a foundation for the mechanism analysis of sweet potato tuberous root development.
Project description:In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing.
Project description:Samples from fruit juice vesicle tissue from three lemon genotypes (Frost Lisbon, Faris "sour" and Faris "sweet") differing in fruit acidity were compared at two developmental timepoints (immature, mature). Faris lemon appears to be a graft chimera with the L2 layer derived from normal acid lemon and layer L1 from Millsweet limetta or a closely related genotype. Fruit of Faris sour and Faris sweet grew on different branches of the same tree, with sour fruit developing on branches with L1 and L2 from acid lemon. genotype: Faris sweet lemon - developmental stage: PO:0007009 FF.01 fruit size 30%,(3-replications); genotype: Faris sweet lemon - developmental stage: PO:0007050 FR.03 late stage of fruit ripening,(3-replications); genotype: Faris acid lemon - developmental stage: PO:0007009 FF.01 fruit size 30%,(3-replications); genotype: Faris acid lemon - developmental stage: PO:0007050 FR.03 late stage of fruit ripening,(3-replications); genotype: Frost Lisbon lemon - developmental stage: PO:0007009 FF.01 fruit size 30%,(3-replications); genotype: Frost Lisbon lemon - developmental stage: PO:0007050 FR.03 late stage of fruit ripening,(3-replications) PLEXdb (http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Mikeal L. Roose. The equivalent experiment is CT1 at PLEXdb.