Project description:In this study, Solexa sequencing technology has been used to discover small RNA populations of self-grafted watermelon and grafted watermelon (bottle gourd and squash were used as rootstocks). A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known and 15 novel miRNAs) and 51 (21 known miRNAs and 30 novel miRNAs) miRNAs were expressed significantly different with higher abundance or lower abundance in watermelon grafted on to bottle gourd and squash, respectively. The differentially expressed miRNA target various transcriptional factors and other genes which involved in a wide range of biological processes. This study was firstly conducted to identify and compare miRNAs on genome-wide scale in watermelon grafting system. The miRNAs expressed differentially when watermelon was grafted onto different rootstocks suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expression to regulate plant growth and response to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular basis of miRNA regulation of genes expressed in self-grafted and grafted watermelon.
Project description:In this study, Solexa sequencing technology has been used to discover small RNA populations of self-grafted watermelon and grafted watermelon (bottle gourd and squash were used as rootstocks). A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known and 15 novel miRNAs) and 51 (21 known miRNAs and 30 novel miRNAs) miRNAs were expressed significantly different with higher abundance or lower abundance in watermelon grafted on to bottle gourd and squash, respectively. The differentially expressed miRNA target various transcriptional factors and other genes which involved in a wide range of biological processes. This study was firstly conducted to identify and compare miRNAs on genome-wide scale in watermelon grafting system. The miRNAs expressed differentially when watermelon was grafted onto different rootstocks suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expression to regulate plant growth and response to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular basis of miRNA regulation of genes expressed in self-grafted and grafted watermelon. Examination of 3 different small RNA expression profilings in self-grafted and grafted watermelon
Project description:Purpose: The goals of this study are to compare differentially expressed transcripts in seedlings of watermelon during salt stress using transcriptome profiling (RNA-seq)
Project description:Watermelon (Citrullus lanatus) is one of the most important vegetable crops in the world and accounts for 20% of the world’s total area devoted to vegetable production. Fusarium wilt of watermelon is one of the most destructive diseases in watermelon worldwide. Transcriptome profiling of watermelon during its incompatible interactions with Fusarium oxysporum f.sp. niveum (FON) was generated using an Agilent custom microarray which contains 15,000 probes representing approximately 8,200 watermelon genes. A total of 24, 275, 596, 598, and 592 genes that are differentially expressed genes between FON- and mock-inoculated watermelon roots at 0.5, 1, 3, 5 and 8 days post inoculation (dpi), respectively, were identified. Bioinformatics analysis of these differentially expressed genes revealed that during the incompatible interaction between watermelon and FON, the expression of a number of pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, and cell wall modification genes, was significantly induced. A number of genes for transporter proteins such as aquaporins were down-regulated, indicating that transporter proteins might contribute to the development of wilt symptoms after FON infection. In the incompatible interaction, most genes involved in biosynthesis of jasmonic acid (JA) showed expressed stronger and more sustained than those in compatible interaction in FON-infected tissues. Similarly, genes associated with shikimate-phenylpropanoid-lignin biosynthesis were also induced in incompatible interaction, but expression of these genes were not changed or repressed in the compatible interaction.