Project description:The marine bacterium Vibrio fischeri requires flagellar motility to undergo symbiotic initiation with its host, the Hawaiian bobtail squid Euprymna scolopes. We sought to identify the genes activated by the sigma54-dependent flagellar master regulator, FlrA, in V. fischeri, thereby determining the flagellar regulon in this model symbiont. We performed microarray analysis on wild-type Vibrio fischeri ES114 and a flrA deletion mutant, DM159, grown to mid-log phase in seawater tryptone, a condition in which cells are highly motile (two biological replicates per condition).
Project description:The marine bacterium Vibrio fischeri requires flagellar motility to undergo symbiotic initiation with its host, the Hawaiian bobtail squid Euprymna scolopes. We sought to identify the genes activated by the sigma54-dependent flagellar master regulator, FlrA, in V. fischeri, thereby determining the flagellar regulon in this model symbiont.
Project description:Acyl-homoserine lactone (acyl-HSL) quorum sensing was first discovered in Vibrio fischeri where it serves as a key control element of the seven-gene luminescence (lux) operon. Since this initial discovery, other bacteria have been shown to control hundreds of genes by acyl-HSL quorum sensing. Until recently, it has been difficult to examine the global nature of quorum sensing in V. fischeri. However, the complete genome sequence of V. fischeri is now available and this has enabled us to use transcriptomics to identify quorum-sensing regulated genes and to study the quorum-controlled regulon of this bacterium. In this study, we used DNA microarray technology to identify over two-dozen V. fischeri genes regulated by the quorum sensing signal N-3-oxohexanoyl-L-homoserine lactone (3OC6-HSL). Keywords: Comparison of transcriptome profiles
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX. The wild-type parent and an insertional mutant (hnoX-) of the hnoX gene were grown to early log phase in a minimal-salts medium. One half of each culture was treated with 80µM of the NO-generator, DEA-NONOate, and the other half was left untreated as a control. After 30 min, cells from all the cultures were fixed with RNAprotect Bacteria Reagent. Total RNA was isolated, labeled and hybridized to the Custom Vibrio fischeri GeneChip Array (Affymetrix). Three independent experiments were performed on separate days for statistical analysis.
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX.
Project description:We report the full transcriptome (RNA-Seq) of Vibrio fischeri ES114 in rich medium, seawater, and after venting from the Hawaiian bobtail squid Euprymna scolopes. We also report the effects of ribodepletion on low-biomass samples, down to input amount of 1ng total RNA.
Project description:Beneficial microbial symbionts are often horizontally acquired by their animal hosts from environmental sources, requiring the symbionts to complete a lifestyle transition from free-living in the environment to association with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates on host mucosa. Extensive work has previously been conducted to isolate the critical factors controlling V. fischeri biofilm formation, yet much remains unknown regarding the full breadth of the biofilm-associated regulon. Here, we probed in vitro models of biofilm formation using transcriptomics, to identify novel regulatory pathways active within biofilms of the V. fischeri type strain ES114. Through comparing the gene-sets which became differentially regulated in multiple biofilm models, we discovered a shared set of 232 genes which demonstrated similar patterns in expression relative to uninduced controls. These genes contained representatives of multiple exopolysaccharide loci, genes involved in flagellar motility, and a diverse collection of other genes. Follow-up analysis suggested that these transcriptomic changes reflected true phenotypic effects, including changes in motility and cyclic-di-GMP production in biofilm-induced backgrounds. Beyond characterizing the shared biofilm response, we additionally profiled the regulatory activity of the sensor kinase RscS. This sensor kinase has previously been characterized to function as a phospho-donor within an established biofilm-inducing phospho-relay, yet our data suggests that RscS moonlights in at least one other phospho-relay that integrates downstream signaling from a homolog of the Vibrio cholerae response regulator VpsR, without a need for its established signaling partners. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation, while revealing new regulatory pathways branching from previously characterized signaling networks.
Project description:The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the V. cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production. Importance: TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike that in V. cholerae. Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts, and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside of its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.
Project description:Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects non-toxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.