Project description:Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained highly variable amounts of inhibitors that impaired molecular analyses like dPCR and next-generation sequencing (NGS). By using dilutions, we were able to detect inhibitory effects. To enhance WBS sensitivity and stability, we applied a combination of PCR inhibitor removal and TNA dilution (PIR+D). This approach led to a 26-fold increase in measured SARS-CoV-2 concentrations, practically reducing the detection limit. Additionally, we observed a substantial increase in stability of the time series. We define suitable stability as a mean absolute error (MAE) below 0.1 log10 copies/l and a geometric mean relative absolute error (GMRAE) below 26%. Using PIR+D, the MAE could be reduced from 0.219 to 0.097 and the GMRAE from 65.5% to 26.0% and even further in real-world WBS. Furthermore, PIR+D improved SARS-CoV-2 genome alignment and coverage in amplicon-based NGS for low to medium concentrations. In conclusion, we strongly recommend both the monitoring and removal of inhibitors from samples for WBS.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:Wastewater has been extensively studied along the years. However, these studies have been focused on the analysis of small molecules. There are no studies about the proteins present in wastewater and let alone an established method to study them. We propose a method for the study of the proteins in wastewater overcoming their low concentration and the interference of other molecules. Moreover, we differentiate between the proteins that are soluble and the ones in the particulate. This method is based on concentration, lysis and clean-up steps. The samples were analyzed afterward using liquid chromatography coupled to high-resolution mass spectrometry (HR-LC/MS) and the data searched with Proteome Discoverer. Thus, this complete method has allowed us to characterize the proteomic composition of different wastewater samples with a low volume.