Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:To address the role of gut microbiota in the development of paclitaxel-induced peripheral neuropathy (PIPN), we performed 16S rRNA sequencing analysis of feces samples at 14 days and 28 days after the initiation of paclitaxel or vehicle injections.
Project description:To investigate the TVA diet's effect on mouse gut microbiome, we fed C57/BL6 mice with TVA diet or CON diet for 18 days We then collected feces of the mice and performed 16S ribosomal RNA (rRNA) sequencing.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Microbiota dysbiosis has been reported to contribute to the pathogenesis of colitis, to demonstrate whether IL-17D protects against DSS-induced colitis through regulation of microflora, we performed 16S rRNA sequencing in feces from WT and Il17d-deficient mice. Our data indicate that Il17d deficiency results in microbiota dysibiosis in both steady state and DSS-induced colitis.
Project description:Vitiligo is a common autoimmune skin disorder. We constructed an induced vitiligo mouse model and performed bulk-RNA sequencing on the skin and 16S rRNA sequencing of feces from vitiligo mice and uninduced mice. Next, we performed skin bulk-RNA sequencing after treatment using ABX. Lastly, we subjected gut microbe-related metabolite hippuric acid to control mice and performed bulk-RNA sequencing on the skin to observe oxidative stress-related gene expression changes.
Project description:A three-stage continuous fermentative system was developed to simulate and control physicochemical factors of the gut biology. Inoculation was of each reactor was performed from a human fecal sample which was initially amplified with a batch procedure. Samples from the initial feces, the batch and from the bioreactors media were collected to extract bacterial DNA. 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 5 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either the initial stool, the batch inoculum or fermentative medium different compartments of the simulated colon (Proximal, Transversal and Distal). Each probe (4441) was synthetized in three replicates.