Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis. Five RNA pools were created corresponding to different tissues of the Prunus mume.
Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis.
Project description:Stamen development is an important developmental process that directly affects the yield of Prunus sibirica. In this study, the male sterile flower buds and male fertile flower buds of Prunus sibirica were used as materials to performed RNA-Seq analyses to compare transcription differences. The results would provide a theoretical basis for further investigation of the formation mechanism of male sterile flower.
Project description:Purpose: The State of Rio Grande do Sul is the largest producer of peaches from Brazil. However, it still has low values of productivity when compared to other States. One of the problems associated to it this is the occurrence of drainage soils problems, which can suffer flooding situations potentially hampering the development and productivity such culture. For studies to assist in the selection of flood tolerant genotypes, it is essential to understand the physiological and molecular changes of the plants in situations of oxygen deprivation. Using Illumina Hiseq2500 we performed transcriptome analysis of leaves from ‘Capdeboscq’ (Prunus persica) and ‘Julior’ (Prunus insititia x Prunus domestica) rootstocks under flooding for 48 hours. Methods: The mRNA of Prunus spp. plants cv. Capdeboscq e Julior was generated using deep sequencing, in triplicate, using Illumina Hi-Seq 2500, for the following treatments:I) control: plants received irrigation daily until field capacity; and II) plants exposed to flood stress, maintaining a water level of approximately 3 cm above the ground. The sequence reads that passed quality filters were analyzed at the transcript level using this method: Mapping using STAR and identification of differentially expressed genes (DEGs) was performed with the edgeR (false discovery rates - FDRs of <0.05). RT–qPCR validation was performed using SYBR Green assays. Results: Flooding stress causes important high transcriptional changes in the ‘Capdeboscq’ compared to 'Julior' and this is mainly due to their sensitivity/tolerance levels. ‘Capdeboscq’ had photosynthesis as the most affected physiological process at the molecular level, showing a large number of down-regulated enriched GOs, even though it activated cellular signaling pathways under flooding. 'Julior' was more efficient in defense responses, which include the activation of flavonoid biosynthesis pathways. Conclusions: The analysis of two Prunus spp. rootstocks contrasting to the level of tolerance / sensitivity provide new insights into the process of plant flood stress tolerance.
Project description:Pistil development is an important developmental process that directly affects the yield of Prunus sibirica. Through transcriptome sequencing analysis of clones with abortive pistil (No. 595) and normal pistil (No. 28) of Prunus sibirica, a total of 1950 significantly differentially expressed genes were obtained, among which 1000 genes were up-regulated and 950 genes were down-regulated. The results provide a theoretical basis for further investigation of the formation mechanism of pistil abortion.