Project description:Perturbed intestinal epithelial homeostasis demonstrated as decreased Lgr5+ intestinal stem cells (Lgr5 ISCs) and increased secretory lineages were observed in our study where Lkb1 was specfically deleted in Lgr5 ISCs using Lgr5-EGFP-creERT2 (Tamoxifen) deletor. To gain mechanistic insight how Lkb1 maintains intestinal epithelial stem cell homeostasis, Lkb1 deficient ISCs (Lgr5-high cells) and progenitors (Lgr5-low cells) are isolated by flow cytometry and profiled by RNA sequencing to compare with controls (Lkb1 wild type ISCs and progenitors).
Project description:Maintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory immunoglobulin A (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric immunoglobulin receptor (pIgR). Here, a breeding scheme with pIgR-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding. We used microarrays to determine the effects of passive and active secretory IgA, in the presence or absence of the epithelial-disrupting agent dextran sulfate sodium, on gene expression in intestinal epithelial cells of mice A breeding scheme was used that involved crosses between mouse dams and sires that were deficient or sufficient for expression of the polymeric immunoglobulin receptor (Pigr), a protein that is required for transport of secretory IgA (SIgA) into external secretions. Offspring of these crosses were genotyped for Pigr alleles, and littermate offspring were distributed into 4 groups based on early exposure to passive SIgA in mother's milk (P-yes and P-no) and ability to carry out Pigr-mediated endogenous transport of active SIgA (A-yes and A-no). Seventy-day-old gender-matched Pigr+/- and Pigr-/- offspring of Pigr+/- and Pigr-/- dams were left untreated or given 2% dextran sulfate sodium (DSS) in drinking water for 8 days. Colonic epithelial cells were isolated, and total cellular RNA was purified. RNA was pooled from 3 mice for each of 2 biological replicates for microarray analysis.
Project description:Maintenance of intestinal homeostasis requires a healthy relationship between the commensal gut microbiota and the host immune system. Breast milk supplies the first source of antigen-specific immune protection in the gastrointestinal tract of suckling mammals, in the form of secretory immunoglobulin A (SIgA). SIgA is transported across glandular and mucosal epithelial cells into external secretions by the polymeric immunoglobulin receptor (pIgR). Here, a breeding scheme with pIgR-sufficient and -deficient mice was used to study the effects of breast milk-derived SIgA on development of the gut microbiota and host intestinal immunity. Early exposure to maternal SIgA prevented the translocation of aerobic bacteria from the neonatal gut into draining lymph nodes, including the opportunistic pathogen Ochrobactrum anthropi. By the age of weaning, mice that received maternal SIgA in breast milk had a significantly different gut microbiota from mice that did not receive SIgA, and these differences were magnified when the mice reached adulthood. Early exposure to SIgA in breast milk resulted in a pattern of intestinal epithelial cell gene expression in adult mice that differed from that of mice that were not exposed to passive SIgA, including genes associated with intestinal inflammatory diseases in humans. Maternal SIgA was also found to ameliorate colonic damage caused by the epithelial-disrupting agent dextran sulfate sodium. These findings reveal unique mechanisms through which SIgA in breast milk may promote lifelong intestinal homeostasis, and provide additional evidence for the benefits of breastfeeding. We used microarrays to determine the effects of passive and active secretory IgA, in the presence or absence of the epithelial-disrupting agent dextran sulfate sodium, on gene expression in intestinal epithelial cells of mice
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups