Project description:Lupus, a server and complex autoimmune disease, is clinically divided into cutaneous lupus erythematosus (CLE) which featured in skin damage, and systemic lupus erythematosus (SLE) which characterized in systemic multi-organ damage. The distinction of these two types of lupus is widely unknown. Here, we collected 23 skin biopsies of healthy control(HC), DLE (discoid lupus erythematosus, a main type of CLE) and SLE, separated epidermis and dermis and performed single cell RNA sequencing through microfluidics based 10x genomics system. Our results demonstrated larger numbers of immune cells infiltrated in skin lesions of DLE than SLE, which may help to distinguish them. Then, non-immune cells such as keratinocytes and fibroblasts were showed functions like immune cells. Moreover, ISGs(interferon stimulated genes), HSP70 coding genes were found to be overexpressed in multi expanded subclusters. Some biological progresses such as autophagy and neutrophil activation were enriched in expanded subclusters.
Project description:Cutaneous lupus erythematosus (CLE) is a disfiguring disease that can exist as an independent entity or as a manifestation of systemic lupus erythematosus (SLE) where up to 70% of patients experience lesions during their disease course. Subacute CLE (sCLE) is an inflammatory lesion with associated erythema in papulosquamous or annular formations. Typically, sCLE does not scar but depigmentation can occur. Importantly, sCLE is associated with a higher progression to SLE. Discoid lesions (DLE) are often circular and frequently lead to alopecia and scar formation. sCLE lesions have a higher propensity for photoprovocation and a more robust inflammatory infiltrate following ultraviolet (UV) B exposure. The pathogenic mechanisms which govern the differences between DLE and sCLE remain poorly defined, and this is reflected by the refractory nature of cutaneous lesions to usual lupus therapies. In this study, we evaluated the transcriptional profiles of 26 DLE and 23 sCLE biopsies and compared them to control skin and to each other in order to develop a comprehensive understanding of the similarities and differences between these two clinical subtypes.
Project description:Complex blood transcriptomes can lead to the clinical heterogeneity of systemic lupus erythematosus (SLE). In the current study, we integrated transcriptomics, public data mining and clinical parameters to reveal whether SLE severity is affected by specific genes or pathways.
Project description:Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that displays a significant gender difference in terms of incidence and severity. However, the underlying mechanisms accounting for sexual dimorphism remain unclear. To reveal the heterogeneity in the pathogenesis of SLE between male and female patients. PBMC were collected from 15 patients with SLE (7 males, 8 females) and 15 age-matched healthy controls (7 males, 8 females) for proteomic analysis. Enrichment analysis of proteomic data revealed that type I interferon signaling and neutrophil activation networks mapped to both male and female SLE, while male SLE has a higher level of neutrophil activation compared with female SLE. Our findings define gender heterogeneity in the pathogenesis of SLE and may facilitate the development of gender-specific treatments.