Project description:To screen specific DNA methylation markers in systemic lupus erythematosus (SLE) patient's blood DNA, whole-blood DNAs from 6 female SLE patients and 6 female controls were analyzed by methylation microarray.
Project description:Systemic lupus erythematosus (SLE) is a chronic-relapsing autoimmune disease of incompletely understood etiology. Recent evidence strongly supports an epigenetic contribution to the pathogenesis of lupus. To understand the extent and nature of dysregulated DNA methylation in lupus T cells, we performed a genome-wide DNA methylation study in CD4+ T cells from 12 lupus patients and 12 normal healthy controls. Cytosine methylation was quantified in 27,578 CG pairs located within the promoter regions of 14,495 genes. We identified 236 hypomethylated and 105 hypermethylated CG sites in lupus CD4+ T cells compared to normal controls, consistent with a global hypomethylation in lupus T cells. Further analysis identified hypomethylation in genes involved in connective tissue development including CD9, MMP9, and PDGFRA. Hypermethylated genes highlight “response to nutrients” ontology such as folate biosynthesis, suggesting a link between environmental factor and lupus and emphasizing the role of folate in DNA methylation. In addition, the transcription factor RUNX3 was hypermethylated in lupus CD4+ T cells. Protein-protein interaction maps identified a transcription factor, HNF4a, as a regulatory hub affecting a number of differentially methylated genes. Functional annotations such as apoptosis is also overrepresented. Further, our data indicate that the methylation status of certain genes predicts disease activity in lupus patients. This work provides a foundation to begin identifying novel pathogenic pathways in lupus T cells and developing novel epigenetic biomarkers for disease activity in lupus. We employed microarray-based technologies to perform a genome-wide DNA methylation assay and quantify CD4+ T cell DNA methylation levels at 27,578 CG sites spanning 14,495 genes of 11 lupus patients and 12 healthy controls.
Project description:Systemic lupus erythematosus (SLE) is a chronic-relapsing autoimmune disease of incompletely understood etiology. Recent evidence strongly supports an epigenetic contribution to the pathogenesis of lupus. To understand the extent and nature of dysregulated DNA methylation in lupus T cells, we performed a genome-wide DNA methylation study in CD4+ T cells from 12 lupus patients and 12 normal healthy controls. Cytosine methylation was quantified in 27,578 CG pairs located within the promoter regions of 14,495 genes. We identified 236 hypomethylated and 105 hypermethylated CG sites in lupus CD4+ T cells compared to normal controls, consistent with a global hypomethylation in lupus T cells. Further analysis identified hypomethylation in genes involved in connective tissue development including CD9, MMP9, and PDGFRA. Hypermethylated genes highlight “response to nutrients” ontology such as folate biosynthesis, suggesting a link between environmental factor and lupus and emphasizing the role of folate in DNA methylation. In addition, the transcription factor RUNX3 was hypermethylated in lupus CD4+ T cells. Protein-protein interaction maps identified a transcription factor, HNF4a, as a regulatory hub affecting a number of differentially methylated genes. Functional annotations such as apoptosis is also overrepresented. Further, our data indicate that the methylation status of certain genes predicts disease activity in lupus patients. This work provides a foundation to begin identifying novel pathogenic pathways in lupus T cells and developing novel epigenetic biomarkers for disease activity in lupus.
Project description:Gene expression profiling of peripheral blood cells from patients with systemic lupus erythematosus (SLE) vs healthy individual (HI).
Project description:Gene expression profiling of peripheral blood cells from patients with systemic lupus erythematosus (SLE) vs healthy individual (HI). Peripheral blood was obtained from patients with SLE (n=21) and HI (n=45). Blood samples from 45 HI are used as control.
Project description:Systemic lupus erythematosus (SLE), also known simply as lupus, is an autoimmune disease. There is no cure for SLE. The mechanism involves an immune response by autoantibodies against a person's own tissues. However, the mechanism underlying imbalance of autoantibodies is not clear. In this experiment, peripheral blood was obtained from normal healthy donors and systemic lupus erythematosus (SLE) patients. Peripheral blood mononuclear cells (PBMC) were separated by Ficoll separation solution. Samples of four (total eight) donors were pooled and Samples of four (total eight) SLE patients were pooled. The aim was to characterize the mRNA profile of SLE patients compared to healthy donors and find the new target of diagnosis or treatment for SLE.
Project description:Epigenetic alternations in addition to genetic factors are important contributors to the pathogenesis of Systemic Lupus Erythematosus (SLE). Recent studies revealed that aberrant changes in DNA methylation occur in SLE patients, and potentially contributes to the pathogenesis. Using genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the DNA methylation level of white blood cells between Chinese female SLE patients with that of healthy controls. There was no difference in global levels of DNA methylation between SLE patients and controls. However, we identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 26 genes and 7 genes respectively. Surprisingly, nearly half of the hypomethylated CpG sites were located in the CpG shores, which implicated the functional importance of loss of DNA methylation in the CpG shores in SLE.
Project description:We performed spatial transcriptomics on a case series of different clinical subtypes of cutaneous lupus erythematosus including acute cutaneous lupus erythematosus (malar rash, systemic lupus erythematosus). Our goals were to (1) determine which differentially expressed genes (DEGs) could be attributed to specific cell populations in specific locations within the tissue, (2) determine if spatial transcriptomics could better distinguish between CLE clinical subtypes than bulk RNA approaches and (3) examine potential cell-cell communication pathways within the skin lesions.