Project description:We identified cis-regulatory elements based on their dynamic chromatin accessibility during the gastrula-larva stages of sea urchin and sea star and studied their evolution in these echinoderm species
2021-10-24 | GSE186363 | GEO
Project description:Genomic characterization of the camarodont sea urchin Tripneustes kermadecensis
Project description:we generated new reference genome assemblies for two species belonging to two different echinoderm classes: the bat sea star Patiria miniata and the purple sea urchin Strongylocentrotus purpuratus
Project description:Sea urchins lack proper eye organs but are photosensitive. In this study, we investigate an extraocular photoreceptor cell (PRC) system in developmental stages of the sea urchin Paracentrotus lividus.
Project description:Using hMeDIP-seq we validated the single-base resolution hydroxymethylomes (ACE-seq) of sea urchin, lancelet and zebrafish embryos.
Project description:Purpose: The Tbrain transcription factor has demonstrated an evolved preference for low-affinity, secondary site binding motifs between the sea star and sea urchin orthologs. We sought to identify targets of sea urchin and sea star orthologs of Tbr. Because less is known about the function of Tbr during sea star development, we used RNA-seq in conjuction with ChIP-seq studies (GEO:xxxx) to determine the targets of sea star Tbr in early development. Methods: Sea star (Patiria miniata) embryos were injected with translation-blocking morpholino antisense oligonucleotides to knock-down PmTbr expression, as described previously. Control morpholinos were injected into sibling embryos. Embryos were allowed to develop until hatching (30-36 hpf) at which point injected embryos were collected and RNA was extracted. RNA-seq libraries were prepared, sequenced, and analyzed using standard protocols. Results: There are 2,562 genes that are significantly differentially expressed relative to control morpholino inected embryos (FDR < 0.05). There are roughly equivalent numbers of genes down-regulated (1,041) and up-regulated (1,521) by Pm-tbr knockdown, suggesting that PmTbr may act as both a transcriptional activator and repressor. 1,165 differentially expressed genes are located within 75 kb of a PmTbr binding site determined using ChIP-seq, and this set is used as a basis for comparison between sea star and sea urchin binding sites. Conclusions: 1,165 targets of the PmTbr transcription factor were identified based on differential expression following knockdown and the presence of transcription factor binding sites proximal to differentially expressed genes. There are an equal number of up- and down-regulated targets, suggesting Tbr may function as a transcriptional activator and repressor, depending on context and target gene. There was no clear association of motif utilization with either the direction of differential expression or ontological category of the target gene. There are only a small fraction of target genes (approximately 10%) that are in common between the sea star and sea urchin sets.
Project description:Sea urchins are emblematic marine animals with a rich fossil record and represent instrumental models for developmental biology. As echinoderms, sea urchins display several characteristics that set them apart from other deuterostomes such as their highly regulative embryonic development and their unique pentaradial adult body plan. To determine whether these characteristics are linked to particular genomic rearrangement or gene regulatory rewiring, we introduce a chromosome-scale genome assembly for sea urchin Paracentrotus lividus as well as extensive transcriptomic and epigenetic profiling during its embryonic development. We found that sea urchins show opposite modalities of genome evolution as compared to those of vertebrates: they retained ancestral chromosomal linkages that otherwise underwent mixing in vertebrates, while their intrachromosomal gene order has evolved much faster between sea urchin species that split 60 Myr ago than it did in vertebrates. We further assessed the conservation of the cis-regulatory program between sea urchins and chordates and identified conserved modules despite the developmental and body plan differences. We documented regulatory events underlying processes like zygotic genome activation and transition to larval stage in sea urchins. We also identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes are involved in organismal novelties, such as Aristotle's lantern, tube feet, or in the specification of lineages through for instance the pmar1 and pop genes. Altogether, our results suggest that gene regulatory networks controlling development can be conserved despite extensive gene order rearrangement.