Project description:Identification of tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. The goal of this study was to characterize the proteomic profile of human tear fluid and examine changes in proteins expression in different stages of diabetic retinopathy.
Project description:To characterize the human salivary proteome and determine changes in proteins expression in different stages of diabetic retinopathy.
Project description:To characterize the human salivary proteome and determine the changes in protein expression in different stages of diabetic retinopathy.
Project description:Diabetic retinopathy (DR) is a microvascular complication that develops in diabetic individuals. There are currently no methods to detect the onset or progression of DR. Biomarkers can help identify the subset of diabetics who are at high risk of developing DR or those DR patients with a high probability to progress quickly to advanced stage. In this study, we examined the serum microparticles as a source of biomarkers for DR. We profiled the microparticle proteome and compared across six different sample groups representing the onset and progression of DR. We found that the microparticle proteins participate in DR pathogenesis. We also validated eight of these proteins and found two to be biomarkers for DR.
Project description:The development of diabetic retinopathy is well characterized on a histological level. Early vascular alterations involve the loss of pericytes. Earlier mechanisms leading to the phenotype of diabetic retinopathy, which involves the complete neurovascular unit, are not yet fully understood. The gene expression data presented here is derived from microarrays and gives further insights into early genetic regulation in incipient diabetic retinopathy.
Project description:The goal of the study was to identify genes whose aberrant expression can contribute to diabetic retinopathy. We determined differential response in gene expression to high glucose in lymphoblastoid cell lines derived from matched type 1 diabetic individuals with and without retinopathy. Those genes exhibiting the largest difference in glucose response between diabetic subjects with and without retinopathy were assessed for association to diabetic retinopathy utilizing genotype data from a meta-genome-wide association study. All genetic variants associated with gene expression (expression QTLs; eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the glucose response gene eQTLs among small association p-values for diabetic retinopathy. Among these, we identified FLCN as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose is greater in individuals with diabetic retinopathy compared to diabetic individuals without retinopathy. Three large, independent cohorts of diabetic individuals revealed an enhanced association of FLCN eQTL to diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy in diabetic individuals. Together, our studies integrating genetic association and gene expression implicate FLCN as a disease gene in diabetic retinopathy.
Project description:To compare the circRNA expression profile of diabetic retinopathy with that of diabetes mellitus and controls, peripheral blood mononuclear cell samples were obtained and extracted from healthy controls and diabetes mellitus patients (with or without diabetic retinopathy). CircRNA Capital Bio Technology Human CircRNA Array v2 was performed to detect circRNA expression profiles. To further check differentiate circRNA, qRT_PCR assay was performed to detect the level of 5 candidates.
Project description:Diabetic nephropathy and diabetic retinopathy are related. We used scRNA-seq and RNA-seq to analyze the cellular linkage between them.