Project description:Phytoplankton transform inorganic carbon into thousands of biomolecules, including polar metabolites that represent an important pool of labile fixed carbon, nitrogen, and sulfur. Metabolite production is not identical among phytoplankton, and the flux of these molecules through the microbial loop depends on compound-specific bioavailability to a wider microbial community. Yet relatively little is known about the diversity or concentration of polar metabolites within marine plankton. Here we evaluate 313 metabolites in 21 phytoplankton species and in natural marine particles across environmental gradients to show that bulk community metabolomes reflect the phytoplankton community on a chemical level.
Project description:Sequencing the metatranscriptome can provide information about the response of organisms to varying environmental conditions. We present a methodology for obtaining random whole-community mRNA from a complex microbial assemblage using Pyrosequencing. The metatranscriptome had, with minimum contamination by ribosomal RNA, significant coverage of abundant transcripts, and included significantly more potentially novel proteins than in the metagenome. Keywords: metatranscriptome, mesocosm, ocean acidification This experiment is part of a much larger experiment. We have produced 4 454 metatranscriptomic datasets and 6 454 metagenomic datasets. These were derived from 4 samples. The experiment is an ocean acidification mesocosm set up in a Norwegian Fjord in 2006. We suspended 6 bags containing 11,000 L of sea water in a Coastal Fjord and then we bubbled CO2 through three of these bags to simulate ocean acidification conditions in the year 2100. The other three bags were bubbled with air. We then induced a phytoplankton bloom in all six bags and took measurements and performed analyses of phytoplankton, bacterioplankton and physiochemical characteristics over a 22 day period. We took water samples from the peak of the phytoplankton bloom and following the decline of the phytoplankton bloom to analyses using 454 metagenomics and 454 metatranscriptomics. Day 1, High CO2 Bag and Day 1, Present Day Bag, refer to the metatranscriptomes from the peak of the bloom. Day 2, High CO2 Bag and Day 2, Present Day Bag, refer to the metatranscriptomes following the decline of the bloom. Obviously High CO2 refers to the ocean acidification mesocosm and Present Day refers to the control mesocosm. Raw data for both the metagenomic and metatranscriptomic components are available at NCBI's Short Read Archive at ftp://ftp.ncbi.nlm.nih.gov/sra/Studies/SRP000/SRP000101
Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression Two functional genes, nitrate reductase and RuBisCO, 4 - 8 replicate features per array
Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression
Project description:These are genome-scale metabolic models used for understanding the metabolic activity and potential of a synthetic gut microbial community in the context of human milk oligossacharides.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:The microbial community and enzymes in fermented rice using defined microbial starter, containing Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae and Pediococcus pentosaceus, play an important role in quality of the fermented rice product and its biological activities including melanogenesis inhibitory activity. The microbial metaproteome revealed large-scale proteins expressed by the microbial community to better understand the role of microbiota in the fermented rice.