Project description:We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. The relationship between changes in bacterial flora and the prognosis of spontaneous cerebral hemorrhage was studied in two cohort studies. Fecal samples from healthy volunteers and patients with intracerebral hemorrhage were subjected to 16S rRNA sequencing at three time points: T1 (within 24 hours of admission), T2 (3 days post-surgery), and T3 (7 days post-surgery) using Illumina high-throughput sequencing technology.
Project description:Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming induced environmental changes is critical to evaluating their influence on soil biogeochemical cycles. In this study, a functional gene array (i.e. GeoChip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25 % and 5 %, while the community functional gene beta-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw related soil and plant changes, and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems.
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicer and anti-icer runoff. This study investigated relations of heterotrophic biofilm prevalence and community composition to environmental conditions at stream sites upstream and downstream of Milwaukee Mitchell International Airport in Milwaukee, WI, during two deicing seasons (2009–2010 and 2010–2011). Modern genetic tools (such as microarray) have not previously been applied to biofilm communities in this type of setting. We used microarray results to characterize biofilm community composition as well as the response of the biofilm community to environmental factors (i.e., organic content (using chemical oxygen demand concentration) and temperature).
Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other