Project description:Restriction site Associated DNA (RAD) tags are a genome-wide representation of every site of a particular restriction enzyme by short DNA tags. Most organisms segregate large numbers of DNA sequence polymorphisms that disrupt restriction sites, which allow RAD tags to serve as genetic markers spread at a high-density throughout the genome. Here, we demonstrate the applicability of RAD markers for both individual and bulk-segregant genotyping. First, we show that these markers can be identified and typed on pre-existing microarray formats. Second, we present a method that uses RAD marker DNA to rapidly produce a low-cost microarray genotyping resource that can be used to efficiently identify and type thousands of RAD markers. We demonstrate the utility of the former approach by using a tiling path array for the fruit fly to map a recombination breakpoint, and the latter approach by creating and utilizing an enriched RAD marker array for the threespine stickleback. The high number of RAD markers enabled localization of a previously identified region, as well as a second novel region also associated with the lateral plate phenotype. Taken together, our results demonstrate that RAD markers, and the method to develop a RAD marker microarray resource, allow high-throughput, high-resolution genotyping in both model and non-model systems. Keywords: microarray genotyping
Project description:To investiage the ability of positve inotropism from myocardial Rad reduction we induced Rad knockout after onset of pressure overload to reverse or compensate progression of heart failure
Project description:One of the most recognizable physiological phenomena is the adrenergic-induced fight-or-flight increase in heart rate and cardiac contraction. For the β-adenergic agonist-induced enhancement of calcium influx and transients, and contractility in the heart, we identify the dual requirement of a subpopulation of Rad-bound calcium channels under basal conditions and PKA phosphorylation of Rad. In mice expressing a non-phosphorylatable Rad mutant, basal cardiac contractility is reduced and adrenergic-augmentation of the calcium current and contractility are disabled. Expression of mutant calcium channel β-subunits that cannot bind the mutant Rad restored contractility, revealing a highly specific therapeutic approach to mimic the contractility imparted by adrenergic agonists. Our findings place Rad and its modulation of calcium channels at the nexus of adrenergic modulation of cardiac responses.
Project description:Retrons are bacterial genetic retroelements that encode reverse transcriptase capable of producing multicopy single-stranded DNA (msDNA) and function as antiphage defense systems. Phages employ several strategies to counter the host defense systems, but no mechanisms for evading retrons are known. Here, we show that tRNATyr and Rad (retron anti defense) of T5 phage family inhibit the defense activity of retron 78 and a broad range of retrons, respectively. The effector protein of retron 78, ptuAB, specifically degraded tRNATyr leading abortive infection, but phage countervailed this defense by supplying tRNATyr. Rad inhibited retron function by degrading noncoding RNA, the precursor of msDNA. In summary, we demonstrated that viruses encode at least two independent strategies for overcoming bacterial defense systems: anti-defense, such as Rad, and defense canceler, like tRNA.
Project description:Retrons are bacterial genetic retroelements that encode reverse transcriptase capable of producing multicopy single-stranded DNA (msDNA) and function as antiphage defense systems. Phages employ several strategies to counter the host defense systems, but no mechanisms for evading retrons are known. Here, we show that tRNATyr and Rad (retron anti defense) of T5 phage family inhibit the defense activity of retron 78 and a broad range of retrons, respectively. The effector protein of retron 78, ptuAB, specifically degraded tRNATyr leading abortive infection, but phage countervailed this defense by supplying tRNATyr. Rad inhibited retron function by degrading noncoding RNA, the precursor of msDNA. In summary, we demonstrated that viruses encode at least two independent strategies for overcoming bacterial defense systems: anti-defense, such as Rad, and defense canceler, like tRNA.