Project description:Our data demonstrate the suitability of target capture technology for purifying very low quantities of Leptospira DNA from biological samples where the human genome is in vast excess. This enables deep sequencing of partial Leptospira genomes directly from clinical samples using next generation technologies and genotyping.
Project description:Pathogenic Leptospira spp. are the causative agents of the zoonotic disease leptospirosis. During infection, Leptospira are confronted with deadly reactive oxygen species (ROS). Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. The peroxide stress regulator, PerR, represses genes involved in ROS defenses in L. interrogans. We have performed RNA sequencing in WT and perR mutant strains to characterize the L. interrogans adaptive response to hydrogen peroxide. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to adapt to peroxide stress as well as canonical chaperones of the heat shock response, and DNA repair. Determining the PerR regulon allowed to identify the PerR-dependent mechanisms of the peroxide adaptive response and has revealed a regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, this adaptive response. Our findings provide comprehensive insight into the mechanisms required by pathogenic Leptospira to overcome infection-related oxidants. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.