Project description:Alkalinity stress is considered to be one of the major stressors for fish in saline-alkali water. Thus, it is of great significance from both aquaculture and physiological viewpoint to understand the molecular genetic response of aquatic organisms to alkalinity stress. The objective of this study is to determine genome-wide gene expression profiles to better understand the physiology response of medaka (Oryzias latipes) to high carbonate alkalinity stress. In lab-based cultures, adult fish were exposed to freshwater and high carbonate alkalinity water .We designed a microarray containing 26429 oligonucleotides and describe our experimental results for measuring gene expression changes in the gill of carbonate alkalinity stress exposed fish. The fish were exposed to freshwater (FW) and high carbonate alkalinity water (AW) for 96h, each with three replicates.
Project description:The ratmouth barbel (Ptychidio jordani) is a critically endangered freshwater fish from the Cyprinidae family, primarily due to overfishing and habitat disruption. To address the challenges of its shrinking wild populations and the difficulties in artificial reproduction, we sequenced, assembled, and annotated a high-quality chromosome-level genome of P. jordani using next-generation short-read sequencing, third-generation long-read sequencing, and Hi-C sequencing. The final genome assembly was 1.14 Gb, consisting of 25 chromosomes with a contig N50 of 25.14 Mb and a scaffold N50 of 42.91 Mb. We identified 25,183 protein-coding genes, 751.75 Mb of repeats, and 19,373 ncRNAs. Methylation loci on most chromosomes ranged from 1,000 to 3,000 per 100 kb window. Gene expression levels across various tissues were analyzed, revealing 12,135 (caudal fin), 11,465 (liver), 14,438 (gill), 12,413 (heart), 8,301 (spleen), and 3,578 (kidney) differentially expressed genes compared to muscle. The comprehensive genomic and transcriptomic resources generated here will aid in understanding the ecology, adaptation, and environmental responses of P. jordani, supporting future research and conservation efforts.