Project description:Investigation of whole genome gene expression level changes in Candida tenuis NRRL Y-1498 grown aerobically in xylose, compared to the same strain grown aerobically in glucose. A six array study using total RNA recovered from three separate cultures of Candida tenuis NRRL Y-1498 grown in glucose and three separate cultures of Candida tenuis NRRL Y-1498 grown in xylose. Each array measures the expression level of 363,196 probes (average probe length 53.1 +/- 3.8 nt) tiled across the Candida tenuis NRRL Y-1498 genome with a median spacing distance of 24 nt. During data processing, probes are filtered to include only those probes corresponding to annotated protein-coding genes.
Project description:The interactions between proteins and nucleic acids have a fundamental function in many biological processes well beyond nuclear gene transcription and include RNA homeostasis, protein translation and pathogen sensing for innate immunity. While our knowledge of the ensemble of proteins binding individual mRNAs in mammalian cells has greatly been augmented by recent surveys, no systematic study on the native proteins of human cells differentially engaging various types of nucleic acids in a non sequence-specific manner has been reported. We designed an experimental approach to cover the non sequence-specific RNA and DNA binding space broadly, including methylation, and test for its ability to interact with the human proteome. We used 25 rationally designed nucleic acid probes in an affinity purification mass spectrometry and bioinformatics workflow to identify proteins from whole cell extracts of three different human cell lines. The proteins were profiled for their binding preferences to the different general types of nucleic acids. The study identified 746 high confidence direct binders, 249 of which were devoid of previous experimental evidence for binding nucleic acids. We could assign 513 specific affinities for sub-types of nucleic acid probes to 219 distinct proteins and to individual domains. The evolutionary conserved protein YB-1, previously associated with cancer and gene regulation, is shown to bind methylated cytosine preferentially conferring YB-1 a potential epigenetic function. Collectively, the dataset represents a rich resource of experimentally determined nucleic acid-specific binding proteins in humans and, indirectly, for other species. Identification of genomic YB-1 binding sites in HEK293 cells
Project description:Investigation of whole genome gene expression level changes in Candida tenuis NRRL Y-1498 grown aerobically in xylose, compared to the same strain grown aerobically in glucose.
Project description:Nucleic Acid Sequencing for the study of division induced double strand breaks in the terminus region of Escherichia coli cells lacking RecBCD DNA repair enzymes.
Project description:The interactions between proteins and nucleic acids have a fundamental function in many biological processes well beyond nuclear gene transcription and include RNA homeostasis, protein translation and pathogen sensing for innate immunity. While our knowledge of the ensemble of proteins binding individual mRNAs in mammalian cells has greatly been augmented by recent surveys, no systematic study on the native proteins of human cells differentially engaging various types of nucleic acids in a non sequence-specific manner has been reported. We designed an experimental approach to cover the non sequence-specific RNA and DNA binding space broadly, including methylation, and test for its ability to interact with the human proteome. We used 25 rationally designed nucleic acid probes in an affinity purification mass spectrometry and bioinformatics workflow to identify proteins from whole cell extracts of three different human cell lines. The proteins were profiled for their binding preferences to the different general types of nucleic acids. The study identified 746 high confidence direct binders, 249 of which were devoid of previous experimental evidence for binding nucleic acids. We could assign 513 specific affinities for sub-types of nucleic acid probes to 219 distinct proteins and to individual domains. The evolutionary conserved protein YB-1, previously associated with cancer and gene regulation, is shown to bind methylated cytosine preferentially conferring YB-1 a potential epigenetic function. Collectively, the dataset represents a rich resource of experimentally determined nucleic acid-specific binding proteins in humans and, indirectly, for other species.