Project description:Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate solubilizing bacteria (PSB) is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation as it can fix nitrogen and excrete ammonium in a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed in order to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, while 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, while acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion in the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising PSB. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth promoting rhizobacterium.
Project description:Paenibacillus polymyxa is a root-associated plant growth-promoting rhizobacterium. It was reported that many strains of P. polymyxa naturally exhibited the phenotypic variation. In the phase variation, the characteristics of the wild-type ‘B’ and the variant ‘F’ are very different in sporulation formation, motility, antibiotic ability and so on. For better understanding of the actual physiological changes, we performed RNA-seq analyses of P. polymyxa E681 to compare genome wide patterns of gene expression. As a result, we obtained 1,062 differentially expressed genes related to flagellar assembly and transport systems.
Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
Project description:Background- The plant growth promoting rhizobacterium Paenibacillus riograndensis SBR5 is a promising candidate to serve as crop inoculant. Despite its potential regarding environmental and economic benefits, the species P. riograndensis is poorly characterized. Here, we performed for the first time a detailed transcriptome analysis of P. riograndensis SBR5 using RNAseq technology. Results- Sequence analysis of the library enriched in 5’-ends of the primary transcripts was used to identify 1,082 TSS belonging to novel transcripts and allowed us to determine a promoter consensus sequence and regulatory sequences in 5’ untranslated regions including riboswitches Conclusions- Our RNAseq analysis provides insight into the P. riograndensis SBR5 transcriptome at the systems level and will be a valuable basis for differential RNAseq analysis of this bacterium.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression. Two-condition experiment, control cells vs. kanamycin treated cells. Biological replicates: 2 control replicates, 2 treated replicates. Pooling of 5 technical replicates for each biological replicate.