Project description:Infections of burn wounds, especially those caused by Pseudomonas aeruginosa, could trigger sepsis or septic shock, which is the main cause of death after burn injury. Compared with traditional saline-wet-to-dry dressings, negative pressure wound therapy (NPWT) is more effective for the prevention and treatment of wound infections. However, the mechanism by which NPWT controls infection and accelerates wound healing remains unclear. Accordingly, in this study, the molecular mechanisms underlying the effects of NPWT were explored using a murine model of P. aeruginosa-infected burn wounds. NPWT significantly reduced P. aeruginosa levels in wounds, enhanced blood flow, and promoted wound healing. Additionally, NPWT markedly alleviated wound inflammation and increased the expression of wound healing–related molecules. Recent evidence points to a role of circular RNAs (circRNAs) in wound healing; hence, whole-transcriptome sequencing of wound tissues from NPWT and control groups was performed to evaluate circRNA expression profiles.
Project description:Wound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection. We developed a clinically relevant murine model of soft tissue infection to explore the role of activation of microbial virulence in response to tissue factors as a mechanism by which pathogenic bacteria cause wound infections. Mice underwent abdominal skin incision and light muscle injury with a crushing forceps versus skin incision alone followed by topical inoculation of Pseudomonas aeruginosa. Pseudomonas aeruginosa whole genome transcriptional profiling demonstrated that fascia induced the activation of multiple genes responsible for the synthesis of the iron scavenging protein pyochelin. Ex-vivo murine fascia homogenates were prepared and Pseudomonas aeruginosa MPAO1 was incubated with an inoculum of the fascia homogenate solution. Pseudomonas aeruginosa MPAO1 incubated under the same condtions without the homogenate was used as the control group. Three biological replicates in each group was used.
Project description:Wound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection. We developed a clinically relevant murine model of soft tissue infection to explore the role of activation of microbial virulence in response to tissue factors as a mechanism by which pathogenic bacteria cause wound infections. Mice underwent abdominal skin incision and light muscle injury with a crushing forceps versus skin incision alone followed by topical inoculation of Pseudomonas aeruginosa. Pseudomonas aeruginosa whole genome transcriptional profiling demonstrated that fascia induced the activation of multiple genes responsible for the synthesis of the iron scavenging protein pyochelin.
Project description:Investigation into murine dermal burn wound. Mouse thermal injury induced, and skin excised at 0 hours, 2 hours, 3 days and 14 days post-injury. Keywords: other
Project description:Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). The P. aeruginosa CF isolate PASS4 has reduced ability to catabolise various carbon sources however can grow on DNA as a sole carbon source but, with a higher biomass production than P. aeruginosa burns wound, laboratory strain PAO1. Therefore, proteomic profiling of PASS4 and PAO1 was conducted following growth on DNA as a sole carbon source. To compare the protein expression of P. aeruginosa strains PAO1 and PASS4 following growth in DNA, the amino acid, asparagine was used a control condition, as asparagine was one of the amino acids PASS4 could utilise.
Project description:Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies. Samples collected from human burn wounds were stabilized and used for P. aeruginosa RNA extraction. The strains from burn wound infection were later used for infection models namely plant and murine tumor infection as well as rich medium controls with planctonic and biofilm growth. The RNA was treated for bacterial RNA enrichment and amplification. All samples were treated in the same way.
Project description:Purpose: Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). We provide an insight to the DNA auxotrophy of P. aeruginosa PASS4 isolate. Better understanding of P. aeruginosa adaptations in the CF lung environment can have a great impact in the development of specialised treatment regimes aimed at the eradications of P. aeruginosa infections. Methods: P. aeruginosa strains PAO1 and PASS4 were grown in minimal medium with either L-Asparagine or DNA as a carbon source, in biological triplicates. RNA was extracted and sequenced on Illumina HiSeq 1000 platform. The sequence reads that passed quality filters were analyzed using EdgePro and DESeq packages, as well as the Rockhopper tool. Results: We mapped > 10 million paired sequence reads per sample to the genome of P. aeruginosa PAO1 and identified a total of 576 genes differentially expressed by PASS4 when grown in DNA (P value < 0.01, log2 fold-change 1< to < -1), with 322 genes upregulated and 254 genes downregulated. There were a total of 423 genes differentially expressed by PAO1 when grown in DNA (P value < 0.01, log2 fold-change 1< to <-1), with 359 genes upregulated and 64 genes downregulated . A total of 129 transcripts displayed similar expression patterns in both organisms, with 112 being upregulated and 17 down-regulated. Conclusions: Our study identified that P. aeruginosa PASS4 was a purine auxotroph. Purine auxotropy may represent a viable microbial strategy for adaptation to DNA rich environments such as the CF lung.
Project description:Taxonomic outliers of Pseudomonas aeruginosa recently emerged as infectious for humans. Here we present the first analysis of a hyper-virulent isolate that cause hemorrhagic pneumonia. We demonstrated that, in two sequential clones CLJ1 and CLJ3 recovered from a patient with chronic obstructive pulmonary disease undergoing antibiotic therapy, insertion of a mobile genetic element into the P. aeruginosa chromosome affected major virulence-associated phenotypes and led to increased resistance to antibiotics used to treat the patient. Our work reveals insertion sequences as major players in enhancing the pathogenic potential of a P. aeruginosa taxonomic outlier by modulating both the virulence and resistance to antimicrobials. This also explains the ability of this bacterium to adapt to an infected host and cause a serious disease.