Project description:The aim of the current study was to characterize the differential cellular and exosomal miRNAs during inflammation or high fat diet-induced obesity in mice. Mesenteric adipose tissue (MAT) and abdominal aorta (AA) from mice fed a normal chow diet (NCD) or a high fat diet (HFD) were harvested for miRNA profiling. MAT-derived adipocytes (MAT-Ad) challenged with either lipopolysaccharide (LPS, 1 µg/ml) or PBS were harvested for miRNA profiling. Meanwhile, miRNAs encapsulated in MAT-Ad-derived exosomes (MAT-Ad-EX) were also analyzed. Hierarchical clustering analysis performed on most significantly regulated miRNAs (HFD vs NCD in tissues; LPS challenge vs PBS in the cells) showed a set of miRNAs that are differentially expressed in obese versus lean MAT or AA tissues, and in LPS-challenged versus PBS-treated MAT-Ads. The dysregulated of miRNAs in MAT-Ad-EX was also generated and hierarchically clustered, induced by prolonged exposure to microbial product.
Project description:Tracing autotroph and heterotroph photosynthetic catalytic carbon cycling within a microbial mat, confirming biomass 13C incorporation into extracellular polymeric substances through proteomics.
Project description:Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme’s response (R2, 0.51–0.80, p < 0.01 in all cases). Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide (latitude 62.2°S–16°N, MAT –1.4ºC–29.5ºC) validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility, confirm the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Project description:The vertebrate skeleton is mostly composed of three specific cell types: immature chondrocytes (IMM), mature (hypertrophic) chondrocytes (MAT), and osteoblasts (OST). These three cell types are distinct, but they also share the expression of many genes. This overlapping gene expression can be attributed to two transcription factors, SOX9 and RUNX2, which operate near the top of hierarchy of the gene regulatory network (GRN) underlying IMM, MAT, and OST. Sox9 drives IMM differentiation, whereas Runx2 regulates OST differentiation. Importantly, MAT do not form without the function of either Sox9 or Runx2, but little is known about mechanisms of GRN regulation in MAT. During MAT differentiation, the expression of Runx2 increases, and many genes regulated by this transcription such as Spp1, Mef2c, Ibsp, and Alpl are activated. To understand regulatory control of gene expression in mature chondrocytes, ChIP-seq experiments were performed using the mouse chondrogenic cell line ATDC5. These experiments identified in vitro RUNX2 binding sites at different stages of chondrogenesis. RUNX2 appeared to bind in most genes enriched in MAT at both day 3 of differentiation. The ChIP-seq analyses presented here verified the molecular mechanisms predicted here to regulate transcription of the many genomic loci in MAT, proving more insight into regulatory control during cartilage maturation.
Project description:Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the values of δ13C for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms. This project measures >200 protein fractions and δ13C values for a sample of Cyanobacteria + Chloroflexi dominated microbial mat from Yellowstone National Park, USA.
Project description:Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) from TrmB in the halophilic archaeon Haloarcula hispanica in the presence and absense of glucose.
Project description:Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the values of δ13C for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms. This project measures a limited number of protein fractions and δ13C values for a sample of floating, mat-like microbial biomass of an intensely phototrophic layer from Mahoney Lake, BC Canada.
Project description:In hypersaline brines, biodegradation of recalcitrant plant polymers can be inhibited by salt-induced microbial stress and/or caused by inadequate metabolic capabilities of extremely halophilic microbes. Therefore, woody materials can be well-preserved even in NaCl brines that are less biologically hostile than most other brines. Here, we considered whether the nanohaloarchaea, that live alongside (the related) haloarchaea, ever partake in the degradation of xylan, a major hemicellulose component of wood. Samples were taken from natural evaporitic brines and anthropogenic solar salterns located in various parts of Europe and Asia. We recently demonstrated that nanohaloarchaeon Ca. Nanohalobium constans lives as an ectosymbiont associated with the chitinolytic haloarchaeon Halomicrobium. Here, we describe an extremely halophilic xylan-degrading consortium with three members, where nanohaloarchaea act as ectosymbionts of Haloferax lucertensis, which in turn acts as a scavenger of xylan-degradation products, produced by a primary xylan hydrolytic Halorhabdus species. The two corresponding binary associations of nanohaloarchaea, Candidatus Nanohalococcus occultus SVXNc and Candidatus Nanohalovita haloferacivicina BNXNv and their hosts were obtained, stably cultivated and characterized. In contrast to the previously described association of chitinolytic haloarchaeon Halomicrobium and its amylolytic symbiont Ca. Nanohalobium, the host haloarchaea within the xylan-degrading consortium could metabolize α-glucans (glycogen and starch), and, thus, obtained no obvious trophic benefit from ectosymbionts. The current study has broadened the range of culturable ectosymbiontic nanohaloarchaea and demonstrates that they are an important ecophysiological component of polysaccharide-degrading halophilic microbial communities and can be readily isolated in binary co-cultures by using the appropriate enrichment strategy.
Project description:Neurospora tetrasperma is a pseudohomothallic filamentous ascomycete with a large (~ 7 Mbp) region of suppressed recombination surrounding its mating-type (mat) locus. The suppressed recombination has lead to sequence divergence between the two mating-type chromosomes of wild-type heterokaryotic strains, while the remaining genome is largely homoallelic. In this study, we use microarray technology to manifest expression divergence linked to mating type in N. tetrasperma. N. tetrasperma and N. crassa, were grown on agar regimes inducing sexual growth (Synthetic Crossing medium) and vegetative growth (Vogel's Medium), respectively. [SC]: Neurospora tetrasperma mat-A FGSC#1270; mat-a FGSC#1271; Mat-A FGSC#9033; mat-a FGSC#9034; N. crassa mat-A FGSC#2489 and mat-a FGSC 4200: Synthetic Crossing medium was used as a nutrient regime before sampling and processing [Veg]: Neurospora tetrasperma mat-A FGSC#1270; mat-a FGSC#1271; Mat-A FGSC#9033; mat-a FGSC#9034; N. crassa mat-A FGSC#2489 and mat-a FGSC 4200: Vogel's Medium (Vegetative Medium) was used as a nutrient regime before sampling and processing