Project description:The complete mitochondrial genome of the widespread leafhopper species Aconurella prolixa (Hemiptera: Cicadellidae: Deltocephalinae: Chiasmini) was obtained via next-generation sequencing. This mitochondrial genome is 14,832 bp in length with the 37 classical eukaryotic mitochondrial genes and a control region. All 13 protein-coding genes (PCGs) are initiated with ATN, except ND5 uses TTG as the start codon, and terminate with TAA or TAG with the exception of COX2 and ND4 which use a single T residue as the stop codon. Twenty-one of the 22 transfer RNA (tRNAs) genes have the typical clover-leaf structure except for trnS1. Unlike some other species of deltocephalinae, no tRNA rearrangements were detected. The monophyly of Cicadellidae and Deltocephalinae, as well as the monophyly of Chiasmini, with a sister relationship between A. prolixa and (Exitianus indicus + Nephotettix cincticeps) is supported by Bayesian inference phylogenetic analyses based on 13 PCGs.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).