ABSTRACT: Application of Loop-Mediated Isothermal Amplification and Next-Generation Sequencing in the Diagnosis of Maternal Tuberculosis with Multiple Negative Tests: A Case Report
Project description:Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a fast and convenient method to amplify and identify the transcripts of a targeted pathogen. We combined bioinformatic and experimental analyses to improve the RT-LAMP assay performance for COVID-19 diagnosis. First, we developed an improved algorithm to design LAMP primers targeting the nucleocapsid (N), membrane (M), and spike (S) genes of SARS-CoV-2. Next, we rigorously validated these new assays for their efficacy and specificity. Further, we demonstrated that multiplexed RT-LAMP assays could directly detect as low as a few copies of SARS-CoV-2 RNA in saliva, without the need of RNA isolation. Importantly, further testing using saliva samples from COVID-19 patients indicated that the new RT-LAMP assays were in total agreement in sensitivity and specificity with standard RT-qPCR. In summary, our new LAMP primer design algorithm along with the validated assays provide a fast and reliable method for the diagnosis of COVID-19 cases.
Project description:In the study of tumor genetics, formalin-fixed paraffin-embedded (FFPE) tumors are the most readily available tissue samples. While DNA derived from FFPE tissue has been validated for array comparative genomic hybridization (aCGH) application, the suitability of such fragmented DNA for single-nucleotide polymorphism (SNP) array analysis has not been well examined. Furthermore, whole-genome amplification (WGA) has been used in the study of small precursor lesions to produce sufficient amount of DNA for aCGH analysis. It is unclear whether the same approach can be extended to SNP analysis. In this study, we examined the utility and limitations of genotyping platform performed on whole-genome amplified DNA from FFPE tumor samples for both copy number and SNP analyses. We analyzed the results obtained using DNA derived from matched FFPE and frozen tissue samples on Affymetrix 250K Nsp SNP array. Two widely used WGA methods, Qiagen (isothermal protocol) and Sigma (thermocycling protocol), were used to determine how WGA methods affect the results. We found that the use of DNA derived from FFPE tumors (without or with WGA) for high-resolution SNP array application can produce a significant amount of false positive and false negative findings. While some of these misinterpretations appear to cluster in genomic regions with high or low GC contents, the majority appears to occur randomly. Only large-scale chromosome LOH (>10Mb) can be reliably detected from FFPE tumor DNA samples (without or with WGA) but not smaller LOH or copy number alterations. Our findings here indicate a need for caution in SNP array data interpretation when using FFPE tumor-derived DNA, particularly with WGA. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from cryopreserved and FFPE mesenchymal tumor samples without or with WGA, as well as genomic snap-frozen non-neoplastic tissue DNA from 5 adult individuals to serve as reference DNA. WGA was performed using the REPLI-g® FFPE kit (Qiagen, Valencia, CA, USA) and GenomePlex® Tissue Whole Genome Amplification WGA5 kit (Sigma, Saint Louis, MO, USA) in parallel in accordance with the manufacturers’ protocols. A two- to eight-hour individualized reaction time was used in the Qiagen platform for each sample. A gradient amount of initial DNA (10ng, 30ng, 60ng, 100ng and 150ng) was tested followed by gel electrophoresis and qualitative multiplex PCR assay to determine the quality of post-WGA products. At least four independent experiments were concurrently performed per template amplification. Four separateWGA reaction products were pooled for each sample for subsequent microarray analysis to minimize the amplification bias and allele dropout. One of the Affymetrix GeneChip® Human Mapping 500K Array Set (Nsp 250K SNP array) was used for genotyping analysis. Four gastrointestinal stromal tumors with known cytogenetic aberrations were included. Two cases were sucessfullly amplified and passed the quality tests. A total of 12 samples were compared between each other, including frozen tissue DNA (as reference), frozen tissue DNA with WGA (two platforms), FFPE tissue DNA, and FFPE tissue DNA with WGA (two platforms) from each case.