Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:Sex differences in liver gene expression are dictated by sex-differences in circulating growth hormone (GH) profiles. Presently, the pituitary hormone dependence of mouse liver gene expression was investigated on a global scale to discover sex-specific early GH response genes that might contribute to sex-specific regulation of downstream GH targets and to ascertain whether intrinsic sex-differences characterize hepatic responses to plasma GH stimulation. RNA expression analysis using 41,000-feature microarrays revealed two distinct classes of sex-specific mouse liver genes: genes subject to positive regulation (class-I) and genes subject to negative regulation by pituitary hormones (class-II). Genes activated or repressed in hypophysectomized (Hypox) mouse liver within 30-90min of GH pulse treatment at a physiological dose were identified as direct targets of GH action (early response genes). Intrinsic sex-differences in the GH responsiveness of a subset of these early response genes were observed. Notably, 45 male-specific genes, including five encoding transcriptional regulators that may mediate downstream sex-specific transcriptional responses, were rapidly induced by GH (within 30min) in Hypox male but not Hypox female mouse liver. The early GH response genes were enriched in 29 male-specific targets of the transcription factor Mef2, whose activation in hepatic stellate cells is associated with liver fibrosis leading to hepatocellular carcinoma, a male-predominant disease. Thus, the rapid activation by GH pulses of certain sex-specific genes is modulated by intrinsic sex-specific factors, which may be associated with prior hormone exposure (epigenetic mechanisms) or genetic factors that are pituitary-independent, and could contribute to sex-differences in predisposition to liver cancer or other hepatic pathophysiologies.
Project description:ER stress could affect many tissues, especially liver, in which non-alcoholic fatty liver disease, liver steatosis, etc. have been reported relative. But there still lack systematic insight into ER stress in liver, which can be obtained by transcriptomics of the tissue. Here, tunicamycin was utilized to induce ER stress in C57BL/6N mice. And microarray was performed to get the transcriptome alteration. Microarray of liver from tunicamycin-injected C57Bl/6N mice