Project description:Birds and other reptiles possess a diversity of feather and scale-like skin appendages. Feathers are commonly assumed to have originated from ancestral scales in theropod dinosaurs. However, most birds also have scaled feet, indicating birds evolved the capacity to grow both ancestral and derived morphologies. This suggests a more complex evolutionary history than a simple linear transition between feathers and scales. We set out to investigate the evolution of feathers via the comparison of transcriptomes assembled from diverse skin appendages in chicken, emu, and alligator. Our data reveal that feathers and the overlapping ‘scutate’ scales of birds share more similar gene expression to each other, and to two types of alligator scales, than they do to the tuberculate ‘reticulate’ scales on bird footpads. Accordingly, we propose a history of skin appendage diversification, in which feathers and bird scutate scales arose from ancestral archosaur body scales, whereas reticulate scales arose earlier in tetrapod evolution. We also show that many “feather-specific genes” are also expressed in alligator scales. In-situ hybridization results in feather buds suggest that these genes represent ancestral scale genes that acquired novel roles in feather morphogenesis and were repressed in bird scales. Our findings suggest that the differential reuse, in feathers, and suppression, in bird scales, of genes ancestrally expressed in archosaur scales has been a key factor in the origin of feathers – and may represent an important mechanism for the origin of evolutionary novelties.
2019-05-01 | GSE120493 | GEO
Project description:Revealing the evolutionary history of a reticulate polyploid complex of Isoetes in northwestern North America
Project description:We isolate the cultivable microbiome of a diatom and show that different bacteria have commensal, antagonistic, or synergistic effects on the diatom. One synergistic bacterium enhances growth of the diatom by production of auxin, a phytohormone. The diatom and its synergistic bacterium appear to use auxin and tryptophan as signaling molecules that drive nutrient exchange. Detection of auxin molecules and biosynthesis gene transcripts in the Pacific Ocean suggests that these interactions are widespread in marine ecosystems.
Project description:Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a “natural experiment” in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Project description:As an ancient jawless vertebrate species, the lamprey offers an important model to probe the evolutionary history of retinal cells. In this study, we generated a cell atlas of the adult sea lamprey retina using single-cell RNA sequencing
2024-03-04 | GSE236005 | GEO
Project description:Phylotranscriptomics interrogation uncovers a complex evolutionary history for the planarian genus Dugesia (Platyhelminthes, Tricladida) in the Western Mediterranean. https://doi.org/10.1016/j.ympev.2022.107649
| PRJNA797284 | ENA
Project description:Evolutionary history and genomic clines of a hybrid pine species complex on the Qinghai-Tibetan Plateau