Project description:Sargassum is one of the most diverse brown algal genus with more than 150 known species, mostly benthic and few pelagic species. They contribute significantly to global primary production and serve as important habitat for wide range of marine organisms. Sargassum vulgare is one of the dominant habitat forming species along Mediterranean coast. Despite their huge ecological importance, it is relatively unknown how they will respond under future global climate change scenario. This work used de novo transcriptome sequencing approach to understand the molecular response of S. vulgare to chronic acidification at the shallow underwater volcanic CO2 vents off Ischia Island, Italy. Keywords: brown algae, Sargassum, de novo transcriptome, ocean acidification, CO2 vents.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).