Project description:<p><b>CALiCo ARIC</b><br/> The Atherosclerosis Risk in Communities Study (ARIC), sponsored by the National Heart, Lung and Blood Institute (NHLBI), is a prospective epidemiologic study conducted in four U.S. communities. ARIC is designed to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic diseases, and variation in cardiovascular risk factors, medical care and disease by race, gender, location, and date. ARIC includes a Cohort Component and a Community Surveillance Component. Cohort enrollment began in 1987. Each ARIC field center randomly selected and recruited a sample of approximately 4,000 individuals aged 45-64 from a defined population in their community. A total of 15,792 participants received an extensive examination, including medical, social, and demographic data. These participants were reexamined every three years with the first screen (baseline) occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth and last exam wastook place in 1996-98. Follow-up occurs yearly byA fifth cohort examination is underway (2011-2013). Yearly telephone tointerviews maintain contact with participants and to assess health status of the cohort.</p> <p>In the Community Surveillance Component, currently ongoing, these four communities are investigated to determine the community-wide occurrence of hospitalized myocardial infarction and coronary heart disease deaths in men and women aged 35-84 years. Hospitalized stroke is investigated in cohort participants only. The study conducts community surveillance of inpatient heart failure (ages 55 years and older) and cohort surveillance outpatient heart failure events beginning in 2005.</p>
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not currently understood. One such mechanism may be through regulation of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in 2,507 African American (AA) and European Americans (EA) participants from the Atherosclerosis Risk in Communities (ARIC) study using the Infinium Human Methylation 450K Beadchip (485,764 CpGs). Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P<5x10-8). To validate our findings we assayed an additional 2,528 participants from the Cardiovascular Health Study (CHS) (N=533) and Framingham Heart Study (FHS) (N=1995). Meta-analysis across all cohorts identified 6 mtDNA-CN associated CpGs to be validated ac ross cohorts at genome-wide significance (P<5x10-8). Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN, including CHD, CVD, and mortality. Experimental modification of mtDNA-CN through knockout via CRISPR-Cas9 of TFAM, a regulator of mtDNA replication, demonstrated that modulation of mtDNA-CN directly drives changes in nDNA methylation and gene expression of specific CpGs and nearby transcripts. Strikingly, the ‘neuroactive ligand receptor interaction’ KEGG pathway was found to be highly overrepresented in the ARIC cohort (P= 5.24x10-12), as well as the TFAM knockout methylation (P=4.41x10-4) and expression (P=4.30x10-4) studies. These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result in differential gene expression of specific genes, including those acting in the ‘neuroactive ligand receptor interaction’ pathway that may impact human health and disease via altered cell signaling.