Project description:In spite of evidence that domestic and wild birds may act as carriers of human pathogenic fungi, data on the role of laying hens as reservoirs of drug resistant and virulent yeasts is lacking. Here, we assess several virulence factors (phospholipase and haemolysin activity) and the antifungal susceptibility profiles of 84 Candida albicans and 17 Candida catenulata strains isolated from cloacae (group A), faeces (group B) and eggs (group C) of laying hens. Of these strains, 95% C. albicans and 23% C. catenulata strains displayed phospholipase and haemolytic activities. For C. albicans, the highest values of phospholipase (Pz = 0.62) and haemolytic activities (Hz = 0.49) were recorded among the strains from group C whilst for C. catenulata (Pz = 0.54; Hz = 0.49) among those from group A. High minimum inhibitory concentration (MIC) values for azoles and amphotericin B (AmB) were recorded irrespective of their sources in all C. albicans strains. A total of 22 C. albicans strains were multidrug resistant, displaying resistance to fluconazole, itraconazole (ITZ), voriconazole (VOR) and posaconazole (POS). All C. catenulata strains from group C were resistant to ITZ, POS, micafungin and anidulafungin and susceptible to AmB. In this study, C. albicans and C. catenulata isolated from the cloacae, faeces and eggs of laying hens produced phospholipase and haemolysin and might be multidrug resistant. In the environment (faeces) or in eggs, C. albicans and C. catenulata strains might acquire pathogenic virulence traits and/or show multidrug resistance profiles. Based on these results, breeding and handling of laying hens and/or eggs may have implications for human and animal health.
Project description:Diutina catenulata (Candida catenulata) is an ascomycete yeast species widely used in environmental and industrial research and capable of causing infections in humans and animals. At present, there are only a few studies on D. catenulata, and further research is required for its more in-depth characterization and analysis. Eleven strains of D. catenulata collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and the CHIF-NET North China Program were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry and internal transcribed spacer sequencing. The antifungal susceptibility of the Diutina catenulata strains was tested using the Clinical and Laboratory Standards Institute broth microdilution method and Sensititre YeastOne™. Furthermore, ERG11 and FKS1 were sequenced to determine any mutations related to azole and echinocandin resistance in D. catenulata. All isolates exhibited low minimum inhibitory concentration (MIC) values for itraconazole (0.06-0.12 μg/ml), posaconazole (0.06-0.12 μg/ml), amphotericin B (0.25-1 μg/ml), and 5-flucytosine (range, <0.06-0.12 μg/ml), whereas four isolates showed high MICs (≥4 μg/ml) for echinocandins. Strains with high MIC values for azoles showed common ERG11 mutations, namely, F126L/K143R. In addition, L139R mutations may be linked to high MICs of fluconazole. Two amino acid alterations reported to correspond to high MIC values of echinocandin, namely, F621I (F641) and S625L (S645), were found in the hot spot 1 region of FKS1. In addition, one new amino acid alteration, I1348S (I1368), was found outside of the FKS1 hot spot 2 region, and its contribution to echinocandin resistance requires future investigation. Diutina catenulata mainly infects patients with a weak immune system, and the high MIC values for various antifungals exhibited by these isolates may represent a challenge to clinical treatment.
Project description:BackgroundIncreasing numbers of immunocompromised patients have resulted in greater incidence of invasive fungal infections with high mortality. Candida albicans infections dominate, but during the last decade, Candida glabrata has become the second highest cause of candidemia in the United States and Northern Europe. Reliable and early diagnosis, together with appropriate choice of antifungal treatment, is needed to combat these challenging infections.ObjectivesTo confirm the identity of 183 Candida glabrata isolates from different human body sites using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and VITEK(®)2, and to analyze isolate protein profiles and antifungal susceptibility. The minimum inhibitory concentration (MIC) of seven antifungal drugs was determined for the isolates to elucidate susceptibility.DesignA total of 183 C. glabrata isolates obtained between 2002 and 2012 from Norwegian health-care units were analyzed. For species verification and differentiation, biochemical characterization (VITEK(®)2) and mass spectrometry (MALDI-TOF) were used. MIC determination for seven antifungal drugs was undertaken using E-tests(®).ResultsUsing VITEK(®)2, 92.9% of isolates were identified as C. glabrata, while all isolates (100%) were identified as C. glabrata using MALDI-TOF. Variation in protein spectra occurred for all identified C. glabrata isolates. The majority of isolates had low MICs to amphotericin B (≤1 mg/L for 99.5%) and anidulafungin (≤0.06 mg/L for 98.9%). For fluconazole, 18% of isolates had MICs >32 mg/L and 82% had MICs in the range ≥0.016 mg/L to ≤32 mg/L.ConclusionsProtein profiles and antifungal susceptibility characteristics of the C. glabrata isolates were diverse. Clustering of protein profiles indicated that many azole resistant isolates were closely related. In most cases, isolates had highest susceptibility to amphotericin B and anidulafungin. The results confirmed previous observations of high MICs to fluconazole and flucytosine. MALDI-TOF was more definitive than VITEK(®)2 for C. glabrata identification.
Project description:Candida duobushaemulonii, type II Candida haemulonii complex, is closely related to Candida auris and capable of causing invasive and non-invasive infections in humans. Eleven strains of C. duobushaemulonii were collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), VITEK 2 Yeast Identification Card (YST), and internal transcribed spacer (ITS) sequencing. Whole genome sequencing of C. duobushaemulonii was done to determine their genotypes. Furthermore, C. duobushaemulonii strains were tested by Sensititre YeastOne™ and Clinical and Laboratory Institute (CLSI) broth microdilution panel for antifungal susceptibility. Three C. duobushaemulonii could not be identified by VITEK 2. All 11 isolates had high minimum inhibitory concentrations (MICs) to amphotericin B more than 2 μg/ml. One isolate showed a high MIC value of ≥64 μg/ml to 5-flucytosine. All isolates were wild type (WT) for triazoles and echinocandins. FUR1 variation may result in C. duobushaemulonii with high MIC to 5-flucytosine. Candida duobushaemulonii mainly infects patients with weakened immunity, and the amphotericin B resistance of these isolates might represent a challenge to clinical treatment.
Project description:Candida auris is an emerging worldwide fungal pathogen. Over the past 20 years, 61 patient isolates of C. auris (4 blood and 57 ear) have been obtained from 13 hospitals in Korea. Here, we reanalyzed those molecularly identified isolates using two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, including Biotyper and Vitek MS, followed by antifungal susceptibility testing, sequencing of the ERG11 gene, and genotyping. With a research-use-only (RUO) library, 83.6% and 93.4% of the isolates were correctly identified by Biotyper and Vitek MS, respectively. Using an in vitro diagnostic (IVD) library of Vitek MS, 96.7% of the isolates were correctly identified. Fluconazole-resistant isolates made up 62.3% of the isolates, while echinocandin- or multidrug-resistant isolates were not found. Excellent essential (within two dilutions, 96.7%) and categorical agreements (93.4%) between the Clinical and Laboratory Standards Institute (CLSI) and Vitek 2 (AST-YS07 card) methods were observed for fluconazole. Sequencing ERG11 for all 61 isolates revealed that only 3 fluconazole-resistant isolates showed the Erg11p amino acid substitution K143R. All 61 isolates showed identical multilocus sequence typing (MLST). Pulsed-field gel electrophoresis (PFGE) analyses revealed that both blood and ear isolates had the same or similar patterns. These results show that MALDI-TOF MS and Vitek 2 antifungal susceptibility systems can be reliable diagnostic tools for testing C. auris isolates from Korean hospitals. The Erg11p mutation was seldom found among Korean isolates of C. auris, and multidrug resistance was not found. Both MLST and PFGE analyses suggest that these isolates are genetically similar.
Project description:Myriocin exhibited very low MIC values (0.016 to 0.4 mg/L) to all C. auris isolates including several multidrug-resistant strains. The yeast-form, filamentous, or aggregating-form cells were all susceptible to the chemical. The antifungal effect was majorly due to the fungistatic activity, although an extended treatment could lead to the fungicidal activity to C. auris cells. Transcriptomic analysis demonstrates that myriocin suppresses the cellular metabolic activity and induces the expression of stress or antifungal response genes.
Project description:Candida tropicalis is one of the major candidaemia agents, associated with the highest mortality rates among Candida species, and developing resistance to azoles. Little is known about the molecular mechanisms of azole resistance, genotypic diversity, and the clinical background of C. tropicalis infections. Consequently, this study was designed to address those questions. Sixty-four C. tropicalis bloodstream isolates from 62 patients from three cities in Iran (2014-2019) were analyzed. Strain identification, antifungal susceptibility testing, and genotypic diversity analysis were performed by MALDI-TOF MS, CLSI-M27 A3/S4 protocol, and amplified fragment length polymorphism (AFLP) fingerprinting, respectively. Genes related to drug resistance (ERG11, MRR1, TAC1, UPC2, and FKS1 hotspot9s) were sequenced. The overall mortality rate was 59.6% (37/62). Strains were resistant to micafungin [minimum inhibitory concentration (MIC) ≥1 μg/ml, 2/64], itraconazole (MIC > 0.5 μg/ml, 2/64), fluconazole (FLZ; MIC ≥ 8 μg/ml, 4/64), and voriconazole (MIC ≥ 1 μg/ml, 7/64). Pan-azole and FLZ + VRZ resistance were observed in one and two isolates, respectively, while none of the patients were exposed to azoles. MRR1 (T255P, 647S), TAC1 (N164I, R47Q), and UPC2 (T241A, Q340H, T381S) mutations were exclusively identified in FLZ-resistant isolates. AFLP fingerprinting revealed five major and seven minor genotypes; genotype G4 was predominant in all centers. The increasing number of FLZ-R C. tropicalis blood isolates and acquiring FLZ-R in FLZ-naive patients limit the efficiency of FLZ, especially in developing countries. The high mortality rate warrants reaching a consensus regarding the nosocomial mode of C. tropicalis transmission.
Project description:Candida auris is an emerging yeast pathogen of global significance. Its multidrug-resistant nature and inadequacies of conventional identification systems pose diagnostic and therapeutic challenges. This study investigated occurrence of C. auris in clinical specimens in Kuwait and its susceptibility to antifungal agents. Clinical yeast strains isolated during 3.5-year period and forming pink-colored colonies on CHROMagar Candida were studied by wet mount examination for microscopic morphology and Vitek 2 yeast identification system. A simple species-specific PCR assay was developed for molecular identification and results were confirmed by PCR-sequencing of rDNA. Antifungal susceptibility testing of one isolate from each patient was determined by Etest. The 280 isolates forming pink-colored colonies on CHROMagar Candida, were identified by Vitek 2 as Candida haemulonii (n = 166), Candida utilis (n = 49), Candida kefyr (n = 45), Candida guilliermondii (n = 9), Candida famata (n = 6) and Candida conglobata (n = 5). Species-specific PCR and PCR-sequencing of rDNA identified 166 C. haemulonii isolates as C. auris (n = 158), C. haemulonii (n = 6) and Candida duobushaemulonii (n = 2). C. auris isolates originated from diverse clinical specimens from 56 patients. Of 56 C. auris isolates tested, all were resistant to fluconazole, 41/56 (73%) and 13/56 (23%) were additionally resistant to voriconazole and amphotericin B, respectively. Eleven (20%) isolates were resistant to fluconazole, voriconazole and amphotericin B. One isolate was resistant to caspofungin and micafungin. Increasing isolation of C. auris in recent years from diverse clinical specimens including bloodstream shows that C. auris is an emerging non-albicans Candida species in Kuwait causing a variety of infections. Inability of conventional identification methods to accurately identify this pathogen and multidrug-resistant nature of many strains calls for a greater understanding of its epidemiology, risk factors for acquiring C. auris infection and management strategies in high-risk patients. This is the first comprehensive study on the emergence of this multidrug-resistant yeast from Kuwait and the Middle East.