Project description:Iron and manganese are part of a small group of transition metals required for photosynthetic electron transport. Here, we present evidence for a functional link between iron and manganese homeostasis. In the unicellular cyanobacterium, Synechocystis sp. PCC 6803 Fe and Mn deprivation resulted in distinct modifications of the function of the photosynthetic apparatus. For example, iron limitation modifies the rate of QA re-oxidation in photosystem II, a complex that contains more Mn than Fe. The intracellular elemental quotas of Fe and Mn are also linked. Fe limitation reduces the intracellular Mn quota. Mn limitation did not exert a reciprocal effect on Fe quotas. Microarray analysis comparing Mn and Fe limitation revealed a stark difference in the extent of the transcriptional response to the two limiting conditions, reflective of the physiological data. The effects of Fe limitation on the transcriptional network are widespread while the effects on Mn limitation are highly specific. Our analysis also revealed an overlap in the transcriptional response of specific Fe and Mn transporters. This overlap provides a framework for explaining Fe limitation induced changes in Mn quotas. Fe transporters can serve as a low affinity Mn transport system. Under iron limitation the specificity of the Fe transport system changes, making it a less efficient Mn transport system.
Project description:Iron and manganese are part of a small group of transition metals required for photosynthetic electron transport. Here, we present evidence for a functional link between iron and manganese homeostasis. In the unicellular cyanobacterium, Synechocystis sp. PCC 6803 Fe and Mn deprivation resulted in distinct modifications of the function of the photosynthetic apparatus. For example, iron limitation modifies the rate of QA re-oxidation in photosystem II, a complex that contains more Mn than Fe. The intracellular elemental quotas of Fe and Mn are also linked. Fe limitation reduces the intracellular Mn quota. Mn limitation did not exert a reciprocal effect on Fe quotas. Microarray analysis comparing Mn and Fe limitation revealed a stark difference in the extent of the transcriptional response to the two limiting conditions, reflective of the physiological data. The effects of Fe limitation on the transcriptional network are widespread while the effects on Mn limitation are highly specific. Our analysis also revealed an overlap in the transcriptional response of specific Fe and Mn transporters. This overlap provides a framework for explaining Fe limitation induced changes in Mn quotas. Fe transporters can serve as a low affinity Mn transport system. Under iron limitation the specificity of the Fe transport system changes, making it a less efficient Mn transport system. We monitored the gene expression of Synechocystis PCC6083 at standard conditions and after 2 days of iron limitation (0Fe), manganese limitation (0Mn) and combined iron and manganese limitation (0Fe0Mn). Each timepoint and condition was sampled in triplicates. Due to strong deviations in one of the three repeats for the 0Mn and 0Fe0Mn conditions, the corresponding replicates were excluded from further analysis.
Project description:G. uraniireducens was isolated from a subsurface site in Rifle, CO undergoing in situ uranium bioremediation. Sediments from the Rifle site were heat-sterilized, amended with acetate to simulate in situ bioremediation conditions, and inoculated with G. uraniireducens. Gene transcript abundance in these cells using sediment Fe(III) and Mn(IV) oxides as the electron acceptor were compared with transcript levels in cells grown with fumarate as the electron acceptor. Additional comparisons were made between cells grown on synthetic Fe(III) or Mn(IV) oxides and cells grown on fumarate.
Project description:We recently established that gene expression in PAXgene stabilized blood RNA distinguishes benign (BN) from malignant (MN) pulmonary nodules in high risk candidates with an AUC of 0.84. We now expand our studies to include incidental nodules identified in routine clinical settings using data from 603 patients analyzed on Illumina microarrays. We identify 300 gene probes achieving an AUC of 0.84 for Indeterminate Pulmonary Nodules (IPN) from 6-25 mm and 0.824 for IPN from 8-20 mm, outperforming 3 prominent clinical models that achieve AUCs of 0.60-0.689. We address the basis for these differences by in silico flow cytometry using CIBERSORT and identify significant differences between MN and BN patients including proportions of T-cells, M0 macrophages, NK cells, B cells and exhausted CD8 T-cells. We identify major increases in expression of genes promoting cell death and strong decreases in functions promoting transcription, lymphogenesis and cell viability. A preferential use of oxidative phosphorylation and a signature of mitochondrial dysfunction are also associated with the presence of a MN.
Project description:Whole-genome DNA microarray analysis of Geobacter sulfurreducens cells grown on Fe(III)-oxide or Mn(IV)-oxide versus cells grown on soluble Fe(III) citrate indicated that there were significant differences in transcription patterns during growth on the insoluble metal oxides compared to growth on soluble Fe(III). Many of the genes that appeared to be up-regulated during growth on the metal hydroxides were involved in electron transport. The most highly up-regulated genes for both conditions were omcS and omcT, which encode co-transcribed c-type cytochromes exposed on the outer surface of the cell that are known to be required for Fe(III) and Mn(IV)-oxide reduction. Other electron transport genes that were up-regulated on both insoluble metals included the gene coding for the outer membrane c-type cytochrome, OmcG, genes for the outer membrane proteins, OmpB and OmpC, and the gene that codes for the structural protein of electrically conductive pili, PilA. Genes that were up-regulated in cells grown on Fe(III)-oxide but not Mn(IV)-oxide, included outer membrane c-type cytochromes including OmcE, a putative DMSO reductase protein, and proteins from the cytochrome bc1 complex. Electron transport genes that were only up-regulated in Mn(IV)-oxide grown cells included the genes that code for the outer membrane c-type cytochromes, OmcZ and OmcB, the periplasmic c-type cytochrome, MacA, and fumarate reductase. Genetic studies indicated that the c-type cytochrome proteins, PpcH, OmcJ, OmcM, OmcV, MacA, OmcF, OmcI, and OmcQ, and the iron sulfur subunit of the cytochrome b/b6 complex, QcrA, are important for reduction of insoluble Fe(III)-oxides but do not appear to be important for Mn(IV) reduction. These results demonstrate that the physiology of Fe(III) reducing bacteria differ significantly during growth on insoluble electron and soluble electron acceptors and emphasizes the importance of c-type cytochromes in extracellular electron transfer in G. sulfurreducens. Geobacter sulfurreducens cells were grown with acetate (5 mM) provided as the electron donor and either Fe(III) oxide or Fe(III) citrate provided as the electron acceptor. Cells were harvested at mid-log and total RNA was extracted. Total RNA (0.5 M-NM-<g) was amplified using the MessageAmp II-Bacteria Kit (Ambion, Foster City, CA) according to the manufacturers instructions. Ten micrograms of amplified RNA (aRNA) was chemically labeled with Cy3 (for the control or soluble electron acceptor condition) or Cy5 (for the experimental or insoluble electron acceptor condition) dye using the MicroMax ASAP RNA Labeling Kit (Perkin Elmer, Wellesley, MA) according to the manufacturerM-bM-^@M-^Ys instructions. RNA samples from three biological replicates were hybridized in duplicate on 12K Combimatrix antisense-detecting arrays. The experimental condition (DL1 grown with Mn(IV) oxide as acceptor) was labeled with cy5, the control condition (DL1 grown with Fe(III) citrate as acceptor) was labeled with cy3
Project description:G. uraniireducens was isolated from a subsurface site in Rifle, CO undergoing in situ uranium bioremediation. Sediments from the Rifle site were heat-sterilized, amended with acetate to simulate in situ bioremediation conditions, and inoculated with G. uraniireducens. Gene transcript abundance in these cells using sediment Fe(III) and Mn(IV) oxides as the electron acceptor were compared with transcript levels in cells grown with fumarate as the electron acceptor. Additional comparisons were made between cells grown on synthetic Fe(III) or Mn(IV) oxides and cells grown on fumarate. 3 biological replicates hybridized in duplicate
Project description:Whole-genome DNA microarray analysis of Geobacter sulfurreducens cells grown on Fe(III)-oxide or Mn(IV)-oxide versus cells grown on soluble Fe(III) citrate indicated that there were significant differences in transcription patterns during growth on the insoluble metal oxides compared to growth on soluble Fe(III). Many of the genes that appeared to be up-regulated during growth on the metal hydroxides were involved in electron transport. The most highly up-regulated genes for both conditions were omcS and omcT, which encode co-transcribed c-type cytochromes exposed on the outer surface of the cell that are known to be required for Fe(III) and Mn(IV)-oxide reduction. Other electron transport genes that were up-regulated on both insoluble metals included the gene coding for the outer membrane c-type cytochrome, OmcG, genes for the outer membrane proteins, OmpB and OmpC, and the gene that codes for the structural protein of electrically conductive pili, PilA. Genes that were up-regulated in cells grown on Fe(III)-oxide but not Mn(IV)-oxide, included outer membrane c-type cytochromes including OmcE, a putative DMSO reductase protein, and proteins from the cytochrome bc1 complex. Electron transport genes that were only up-regulated in Mn(IV)-oxide grown cells included the genes that code for the outer membrane c-type cytochromes, OmcZ and OmcB, the periplasmic c-type cytochrome, MacA, and fumarate reductase. Genetic studies indicated that the c-type cytochrome proteins, PpcH, OmcJ, OmcM, OmcV, MacA, OmcF, OmcI, and OmcQ, and the iron sulfur subunit of the cytochrome b/b6 complex, QcrA, are important for reduction of insoluble Fe(III)-oxides but do not appear to be important for Mn(IV) reduction. These results demonstrate that the physiology of Fe(III) reducing bacteria differ significantly during growth on insoluble electron and soluble electron acceptors and emphasizes the importance of c-type cytochromes in extracellular electron transfer in G. sulfurreducens. Geobacter sulfurreducens cells were grown with acetate (5 mM) provided as the electron donor and either Fe(III) oxide or Fe(III) citrate provided as the electron acceptor. Cells were harvested at mid-log and total RNA was extracted. Total RNA (0.5 μg) was amplified using the MessageAmp II-Bacteria Kit (Ambion, Foster City, CA) according to the manufacturers instructions. Ten micrograms of amplified RNA (aRNA) was chemically labeled with Cy3 (for the control or soluble electron acceptor condition) or Cy5 (for the experimental or insoluble electron acceptor condition) dye using the MicroMax ASAP RNA Labeling Kit (Perkin Elmer, Wellesley, MA) according to the manufacturer’s instructions.