Project description:Long non-coding RNAs (lncRNAs) have been identified in various tissues and cell types from human, monkey, porcine and mouse. However, expression profile of lncRNAs across Guangxi native cattle and swamp buffalo muscle development has never been investigated. Here, we examine the expression of lncRNA in cattle and buffalo muscle at adult stage(12 months), exhibiting the first report of lncRNA in the Guangxi native cattle and swamp buffalo muscle development of a large animal. 16,236 lncRNA candidates were obtained from buffalo skeletal muscle samples, of which a number of lncRNAs were highly abundant, and 2,161 lncRNAs were differentially expressed between buffalo and cattle. Real-time quantitative PCR (qPCR) analysis confirmed the expression profile of these lncRNAs, including several highly abundant lncRNAs, and a subset of differently expressed lncRNAs according to the high-throughput RNA sequencing (RNA-seq) data. These results indicate that abundant lncRNA is differentially expressed in bovine muscle, indicating important and diverse functions in mammalian muscle development.
Project description:RNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).
Project description:Investigation of whole genome gene expression level changes in rumen epithelium of dairy cattle at different stages of rumen development and on different diets.
Project description:We performed single-cell RNA-sequencing on the rumen epithelium of dairy cows to construct an epithelial single-cell map of the rumen.
Project description:AIMS: To explore and validate the utility of rumen endoscopy for collection of rumen papillae for gene expression measurement. METHODS: Four adult Coopworth ewes were fasted for either 4 or 24 hours. Animals were sedated, placed in a dorsally recumbent position at 45 degrees with the head upright, and an endoscope inserted via a tube inserted into the mouth. Biopsies of rumen papillae were taken from the ventral surface of the rumen atrium under visual guidance. Two biopsies were collected from one of the animals that had been fasted for 4 hours, and three from one of the animals that had been fasted for 24 hours. Video of the rumen atrium and reticulum was also collected. The animals recovered uneventfully. Biopsies were subsequently used for extraction and sequencing of mRNA. RESULTS: The ventral surface of the rumen atrium was accessible after 4 hours off pasture, but a larger region was accessible after 24 hours of fasting. Sedation allowed access for endoscope use for around 5 to 10 minutes after which increased saliva flow was noted. Rumen papillae biopsies were easily collected, with samples from a variety of sites collected in the ∼10 minute time window. High quality RNA was obtained for stranded mRNA sequencing. Of the resulting reads, 69–70% mapped uniquely to version 3.1 of the ovine genome, and 48–49% to a known gene. The rumen mRNA profiles were consistent with a previously reported study. CONCLUSIONS: This method for obtaining rumenal tissue was found to be rapid and resulted in no apparent short or long term effects on the animal. High quality RNA was successfully extracted and amplified from the rumen papillae biopsies, indicating that this technique could be used for future gene expression studies. The use of rumen endoscopy could be extended to collection of a variety of rumen and reticulum anatomical measurements and deposition and retrieval of small sensors from the rumen. Rumen endoscopy offers an attractive and cost effective approach to repeated rumen biopsies compared with serial slaughter or use of cannulated animals.
Project description:Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide inter-species differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ cell and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.