Project description:<p>The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term effort to identify genetic variants that predispose to type 2 diabetes (T2D) or that impact the variability of T2D-related quantitative traits. The initial effort involved linkage analysis of affected-sibling-pair (ASP) families based on over 5,000 individuals living in Finland, and association fine mapping based on these family members and additional T2D cases and controls. Recently we completed a genome-wide association scan on 1161 T2D cases and 1174 normal glucose tolerant (NGT) controls. Individual-level data is available here for the 919 T2D cases and 787 NGT controls who reconsented to the use of their data or are deceased. Version 3 adds individual-level data for additional phenotypic variables.</p>
Project description:<p>The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term effort to identify genetic variants that predispose to type 2 diabetes (T2D) or that impact the variability of T2D-related quantitative traits. The initial effort involved linkage analysis of affected-sibling-pair (ASP) families based on over 5,000 individuals living in Finland, and association fine mapping based on these family members and additional T2D cases and controls. We completed a genome-wide association scan on 1161 T2D cases and 1174 normal glucose tolerant (NGT) controls. Individual-level data is available for the 919 T2D cases and 787 NGT controls who reconsented to the use of their data or are deceased (<a href="./study.cgi?study_id=phs000100">phs000100</a>). In addition, we selected these 919 T2D cases and a matched set of 919 NGT controls (774 overlapping with GWAS) for targeted sequencing of 78 genes associated with glucose, insulin, and/or lipids. 400 of these T2D cases were also chosen for whole-exome sequencing (<a href="./study.cgi?study_id=phs000702">phs000702</a>).</p>
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:To elucidate the epithelial cell diversity within the nasal inferior turbinates, a comprehensive investigation was conducted comparing control subjects to individuals with house dust mite-induced allergic rhinitis. This study aimed to delineate the differential expression profiles and phenotypic variations of epithelial cells in response to allergic rhinitis. This research elucidated distinct subpopulations and rare cell types of epithelial cells within the nasal turbinates, discerning alterations induced by allergic rhinitis. Furthermore, by interrogating transcriptomic signatures, the investigation provided novel insights into the cellular dynamics and immune responses underlying allergic rhinitis pathogenesis
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.