Project description:Abdominal aortic aneurysm (AAA) is a permanent segmental dilatation of the abdominal aorta, contributing to a high mortality once rupture. We performed RNA-sequencing analysis of abdominal aorta tissues from 14 participants, including seven patients with AAA and seven control individuals.
Project description:The aim of this study was to assess the relative gene expression in human AAA and AOD. Genome-wide expression analysis of abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) specimens obtained from 20 patients with small AAA (mean maximum aortic diameter=54.3±2.3 mm), 29 patients with large AAA (mean maximum aortic diameter=68.4±14.3 mm), and 9 AOD patients (mean maximum aortic diameter=19.6±2.6 mm). Relative aortic gene expression was compared with that of 10 control aortic specimen of organ donors.
Project description:An abdominal aortic aneurysm (AAA) is a pathological widening of the aortic wall characterized by loss of AoSMCs, extracellular matrix degradation and local inflammation. This condition is often asymptomatic until rupture occurs, leading to high morbidity and mortality rates. We conducted single-cell RNA sequencing (scRNA-seq) from AAA patients´s specimens to profile gene expression at single cell level and to gain insight on cell types relevant to disease dynamics.
Project description:We sought to identify differentially regulated microRNAs in infrarenal mouse aortic tissue after AAA-induction with PPE, compared with sham-operated mice. This treatment leads to rapid development of infrarenal aortic aneurysms with significant diameter differences observed by Day 7. We found 41 miRNAs were up-regulated with aneurysm and 37 down-regulated at p<0.05, which were also altered by >1.5-fold. Utilizing the PPE infusion model, we induced AAA in Male 10-week-old C57/Bl6 mice, 7 days after AAA-induction with PPE. One array per mouse, 5 mice per group, two groups (PPE and sham).
Project description:Inflammation is still a crucial factor in the development of abdominal aortic aneurysm (AAA). The CD45+ cell population of elastase-induced murine AAA was deconstructed at the single-cell level using the single-cell RNA (scRNA) transcriptomic technique.
Project description:Transcriptional profiling of infrarenal aortic tissue from Male 10-week-old C57BL/6J mice after AAA-induction with porcine pancreatic elastase, compared with sham-operated mice. Includes samples obtained 7 days after aneurysm induction. Goal was to examine gene expression in developing AAA in this model, and compare with miRNA profiling performed using the same tissue. Two condition experiment, one infrarenal aorta per array. Sham vs. PPE at Day 7 post-operatively. Total 10 arrays: 5 sham D7, 5 PPE D7.
Project description:Abdominal aortic aneurysm (AAA) is a common degenerative cardiovascular disease without clear understanding of its pathobiology. To detect AAA associated variants that may affect gene regulation, we generated H3K27ac HiChIP data for aortic smooth muscle cells (AoSMC) and aortic endothelia cells (HAEC), the two cell types most relevant to the AAA disease. We further implemented cell type-specific REs defined from HiChIP experiments, and observed the consistency between the chromatin accessibility of REs and the expression levels of their target genes. Moreover, the cell type-specific REs contributed to detect the AAA most relevant cell type, AoSMC, and locate the important AAA-related TFs, ERG and KLF family.
Project description:Transcriptional profiling of infrarenal aortic tissue from Male 10-week-old C57BL/6J mice after AAA-induction with porcine pancreatic elastase, compared with sham-operated mice. Includes samples obtained 7 days after aneurysm induction. Goal was to examine gene expression in developing AAA in this model, and compare with miRNA profiling performed using the same tissue.
Project description:Abdominal aortic aneurysm (AAA) is usually asymptomatic until life-threatening complications occur, predominantly involving aortic rupture. Currently, no drug-based treatments are available, primarily due to limited understanding of AAA pathogenesis. The transcriptional regulator PR domain–containing protein 16 (PRDM16) is highly expressed in the aorta, but its functions in the aorta are largely unknown. By RNA-seq analysis, we found that vascular smooth muscle cell–specific (VSMC-specific) Prdm16-knockout (Prdm16SMKO) mice already showed extensive changes in the expression of genes associated with extracellular matrix (ECM) remodeling and inflammation in the abdominal aorta under normal housing conditions without any pathological stimuli. Human AAA lesions displayed lower PRDM16 expression. Periadventitial elastase application to the suprarenal region of the abdominal aorta aggravated AAA formation in Prdm16SMKO mice. During AAA development, VSMCs undergo apoptosis because of both intrinsic and environmental changes, including inflammation and ECM remodeling. Prdm16 deficiency promoted inflammation and apoptosis in VSMCs. A disintegrin and metalloproteinase 12 (ADAM12) is a gelatinase that can degrade various ECMs. We found that ADAM12 is a target of transcriptional repression by PRDM16. Adam12 knockdown reversed VSMC apoptosis induced by Prdm16 deficiency. Our study demonstrated that PRDM16 deficiency in VSMCs promoted ADAM12 expression and aggravates AAA formation, which may provide potential targets for AAA treatment.