Project description:Hdac4 has been found to modulate symptoms in Huntington's Disease (HD) mouse models through an uknown mechanism unrelated to any enzymatic activity. We investigated the protein-protein interactions to gain insight into the role of Hdac4 in HD.
Project description:The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.
Project description:Compared the global gene expression profiles of HD- and CON-iPSC-derived neurons We used microarrays to detail the global programme of gene expression for comparing the global gene expression profiles of HD- and CON-iPSC-derived neurons and facilitating studies of medium spiny neurons (MSN)-degenerative processes of Huntington's Disease (HD).
Project description:Huntington's disease (HD) and control GLAST-postive induced pluripotent stem cell (iPSC)-derived astrocytes underwent single-nucleus RNA-sequencing to investigate cell state diversity across control and HD patient-derived astrocytes.
Project description:We intend to screen altered genes after overexpression of miR-196a in HD transgenic mice. Two transgenic mouse lines were used in this study, including HD transgenic mice and HD transgenic mice overexpressing miR-196a. The mice were all at approximate 12 months of age. At this point, HD transgenic mice showed severve motor dysfunctions, whereas HD transgenic mice overexpressing miR-196a displayed mild motor dysfunctions.
Project description:We report the identification of F0X03 targets in human Huntington's disease neural stem cells. To this end, we generated RNA-seq data upon FOXO3 nuclear induction in human Huntington's disease (HD) and CAG-corrected (C116) neural stem cells.