Project description:Reef-building corals live in a mutualistic relationship with photosynthetic algae (family Symbiodiniaceae) that usually provide the bulk of the energy required by the coral host. This relationship is very sensitive to temperature stress, with as little as 1°C increase above mean in sea surface temperatures (SSTs) often leading to the collapse of the association. The meta-stability of these associations has led to interest in the potential of more stress tolerant algae to supplement or substitute for the normal Symbiodiniaceae mutualists. In this respect, the apicomplexan-like microalga Chromera is of particular interest as it is considerably more temperature tolerant than are most members of the Symbiodiniaceae. Here we generated a de novo transcriptome for a Chromera strain isolated from a GBR coral (“GBR Chromera”) and compared to those of the reference strain of Chromera (“Sydney Chromera”), and to those of Symbiodiniaceae algae (Fugacium, Cladocopium and Breviolum), as well as the apicomplexan parasite, Plasmodium falciparum. By contrast with the Symbiodiniaceae, the two Chromera strains had a high level of sequence similarity evident by very low levels of divergence in orthologous genes. Although surveys of specific KEGG categories provided few general criteria by which true coral mutualists might be identified, they provide a molecular rationalization for the near ubiquitous association of Cladocopium strains with Indo-Pacific reef corals in general and with Acropora spp. in particular. In addition, HSP20 genes may underlie the higher thermal tolerance shown by Chromera compared to Symbiodiniaceae
Project description:Despite the ecological significance of the relationship between reef-building corals and intracellular photosynthetic dinoflagellates of the genus Symbiodinium, very little is known about the molecular mechanisms involved in the establishment of the relationship. Indeed, microarray-based analyses point to the conclusion that host gene expression is largely or completely unresponsive during the establishment of symbiosis with a competent strain of Symbiodinium. In the present study, the use of Illumina RNAseq technology allowed detection of a transient period of differential expression involving a small number of genes (1073 transcripts; <3% of the transcriptome) 4h after the exposure of Acropora digitifera planulae to a competent strain of Symbiodinium (a clade B strain). This phenomenon has not previously been detected as a consequence of both the lower sensitivity of the microarray approaches used and the sampling times used. The results imply that complex changes occur, including transient suppression of mitochondrial metabolism and protein synthesis, but are also consistent with the hypothesis that the symbiosome is a phagosome that has undergone early arrest, raising the possibility of common mechanisms in the symbiotic interactions of corals and symbiotic sea anemones with their endosymbionts.