Project description:Three different experimental approaches were evaluated for discrimination of genomic variance in and between duplicated sequences using 48 markers in duplicon regions and 17 SNPs in unique sequences previously characterized in another study. We found only the method high-throughput single sperm typing could conclusively resolve the alleles of all markers. Resulting data from single sperm analysis were also used to examine the genetic structure of duplicon markers in the human population. Single sperm typing can be a rapid, efficient and accurate method for initial screening and assessment of genetic variation and for detailed genetic analysis of duplicon markers. Keywords: Genotyping
Project description:Transcritome study of C.elegans exposed to multiple, different bacterial pathogens. Experiments were performed in set-replicates of either 3 or 5.<br> There are 3 for samples: Aeromonas hydrophila, Enterococcus faecalis, Erwinia carotovora and Photorhabdus luminescens. <br> There are 5 for samples: Serratia marcesens and Escherichia coli (control).<br>
Project description:The Lemnaceae (duckweeds) are the world’s smallest but fastest growing flowering plants, with a drastically reduced morphology and predominant clonal reproductive habit capable of continuous exponential growth. Here, we present assemblies of 10 Lemna chromosome sets by single molecule nanopore sequencing and chromosome conformation capture. Dynamics of genome evolution in the family are revealed by syntenic comparisons with Wolffia and Spirodela, and diversification of these genera was found to coincide with the “Azolla event”, in which blooms of aquatic macrophytes reduced atmospheric CO2 from greenhouse levels found in the Eocene to those of the current ice age. Orthologous gene comparisons with other aquatic and terrestrial plants uncovered candidate genes for the unique metabolic and developmental features of the family, such as frequent hybrid polyploidy, lack of stomatal closure in high CO2, and accumulation of calcium oxalate, a promising candidate for carbon sequestration. Loss of a spermine-triggered gene network accounts for drastic reduction in stature and preferentially adaxial stomata, a feature of floating aquatic plants. Strikingly, Lemnaceae genomes have selectively lost some of the genes required for RNA interference, including Argonaute genes required for post-zygotic reproductive isolation (the triploid block) and reduced gamete formation. Triploid hybrids arise commonly among Lemna, presumably by hybridization with unreduced gametes, and we have found mutations in highly-conserved ZMM crossover pathway genes that could support polyploid meiosis. Rapid but stable clonal propagation makes Lemna an ideal platform for protein and starch micro-cropping, and for sequestration of dissolved nutrients and atmospheric CO2. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by our recent engineering of high-oil Lemna lines that out-perform with oil seed crops.
Project description:A method based on a modified broad-range PCR and an oligonucleotide microarray for the simultaneous detection and identification of 12 bacterial pathogens at the species level.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain PS003.