Project description:Transcriptional profiling of wilt-resistant and wilt-susceptible chickpea cultivars after Fusarium oxysporum f.sp. ciceri (Foc) inoculation
Project description:The total RNA were extracted from pooled tissues of leaves and flowers from several plants of chickpea (Cicer arietinum) using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. Then small RNAs ranging in 18–30 nucleotides were size fractionated electrophoretically, isolated from the gel, ligated with the 5′ and 3′ RNA adapters. The ligated product was reverse transcribed and subsequently amplified using 10–12 PCR cycles. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to predict microRNAs and phased small interfering RNAs from chickpea. Identification of microRNAs and phased small inferfering RNAs in chickpea (Cicer arietinum) by analyzing small RNA sequencing profiles of leaves and flowers using Illumina GAII.
Project description:Drought is one of the major constraints for crop productivity across the globe. Chickpea (Cicer arietinum L.) is mainly cultivated in the arid and semi-arid tropical regions under rain-fed conditions and drought stress is one of the major constraints, which causes up to 50% yield losses annually. In this study, transcriptomics, proteomics and metabolomics datasets from root tissues of contrasting drought responsive chickpea genotypes, ICC 4958 (drought-tolerant), JG 11 (drought-tolerant); an introgression line, JG 11+ (drought-tolerant) and ICC 1882, (drought-sensitive) under control and stress conditions were generated. The integrated analysis of these multi-omics data revealed complex molecular mechanism underlying drought stress response in chickpea. Transcriptomics integrated with proteomics data identified enhancement of hub proteins encoding isoflavone 4’-O-methyltransferase (Ca_06356), UDP-D-glucose/UDP-D-Galactose 4-epimerase (Ca_15037) and delta-1-pyrroline-5-carboxylate synthesis (Ca_24241). These proteins highlighted the involvement of critical pathways such as antibiotic biosynthesis, galactose metabolism and isoflavonoid biosynthesis in activating drought stress response mechanism. Subsequently, integration of metabolomics data identified six key metabolites (fructose, galactose, glucose, myo-inositol, galactinol and raffinose) that showed enhanced correlation with galactose metabolism. Further, integration of root -omics data together with genomic dataset of the “QTL-hotspot” region harbouring several drought tolerance related traits revealed involvement of candidate genes encoding aldo keto reductase family oxidoreductase (Ca_04551) and leucine rich repeat extensin 2 (Ca_04564). These results from integrated multi-omics approach provided a comprehensive understanding and new insights into the drought stress response mechanism of chickpea.
Project description:The total RNA were extracted from pooled tissues of leaves and flowers from several plants of chickpea (Cicer arietinum) using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. Then small RNAs ranging in 18–30 nucleotides were size fractionated electrophoretically, isolated from the gel, ligated with the 5′ and 3′ RNA adapters. The ligated product was reverse transcribed and subsequently amplified using 10–12 PCR cycles. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to predict microRNAs and phased small interfering RNAs from chickpea.
Project description:Purpose: To identify Fusarium wilt and salt-responsive miRNAs at genome wide level in Chickpea. Results: A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume specific miRNAs, miR5213, miR5232, miR2111 and miR2118 were found in all the libraries. The Poly (A) tailing assay based qRT-PCR was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection and targets zinc knuckle and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses indicating a cross talk between the pathways involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homology. miR166 targets a HD-ZIPIII transcription factor and was validated by 5’ RLM-RACE. Conclusions: The present study has led to identification of several conserved and novel miRNAs in chickpea associated with gene regulation in reference to wilt and salt stress conditions. This study will help in better understanding of how chickpea functions in response to stresses. Total three small RNA libraries from chickpea were prepared and sequenced independently [Control (C), Wilt stress (WS), Salt stress (SS)] on Illumina GAIIx.