Project description:Lipoprotein lipase (Lpl) was predicted as a causal gene for abdominal using a novel statistical method named LCMS (Schadt et al., 2005, Nature Genetics). In order to validate this prediction, we profiled the liver tissues of lipoprotein lipase heterozygous knockout mice (Lpl+/-) and their littermate wild-type (wt) controls to examine the gene expression signature as well as pathways/networks resulting from the single gene perturbation. 8 Lpl+/- mice and 8 wt controls were profiled. Reference pool included RNA extracted from the liver of 9 wt control mice. Dye-swap was involved in the profiling.
Project description:Lipoprotein lipase (Lpl) was predicted as a causal gene for abdominal using a novel statistical method named LCMS (Schadt et al., 2005, Nature Genetics). In order to validate this prediction, we profiled the liver tissues of lipoprotein lipase heterozygous knockout mice (Lpl+/-) and their littermate wild-type (wt) controls to examine the gene expression signature as well as pathways/networks resulting from the single gene perturbation.
Project description:Lipoprotein lipase (LPL) is an extracellular lipase that preferentially hydrolyses triglycerides in triglyceride-rich lipoproteins within the circulation. LPL expression in macrophages contributes to atherosclerosis. In addition, the hydrolysis products liberated from lipoprotein lipids by LPL causes lipid accumulation and impairs cholesterol efflux ability in macrophages. However, the effects of LPL hydrolysis products in modulating the transcript profiles within macrophages and their roles in foam cell formation are not completely understood. We performed microarray analyses on THP-1 macrophages incubated with LPL hydrolysis products to identify differentially expressed genes.
Project description:Here we report that the transcription factor cyclic AMP–responsive element–binding protein H (CREB-H, encoded by CREB3L3) is required for the maintenance of normal plasma triglyceride concentrations. CREB-H–deficient mice showed hypertriglyceridemia secondary to inefficient triglyceride clearance catalyzed by lipoprotein lipase (Lpl), partly due to defective expression of the Lpl coactivators Apoc2, Apoa4 and Apoa5 and concurrent augmentation of the Lpl inhibitor Apoc3. We identified multiple nonsynonymous mutations in CREB3L3 that produced hypomorphic or nonfunctional CREB-H protein in humans with extreme hypertriglyceridemia, implying a crucial role for CREB-H in human triglyceride metabolism. Total RNAs were isolated from the liver of three WT and three Creb3l3 deficient mice after a 24-h fasting. Littermates were used. Gene expression profiles were examined using Illumina WG-6 microarray chips.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), but its physiological role in a cell-type-specific manner remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Mechanistically, our data demonstrate a critical requirement of Sel1L for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Further biochemical analyses revealed that Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and prone to the formation of protein aggregates, which are degraded by autophagy-mediated degradation. The Sel1L-mediated control of LPL secretion is seen in other LPL-expressing cell types as well such as cardiac muscle and macrophages. Thus, our study reports a novel role of Sel1L in LPL secretion and systemic lipid metabolism. Sel1Lflox/flox mice were crossed with adiponectin promoter driven Cre mice to create adipose tissue-specific Sel1L-/- mice. Male wildtype C57Bl/6 mice and adipose tissue-specific Sel1l-/- mice were fed a high fat diet (Research Diets D12492) for 5 weeks. Adipose tissue was excised and used for microarray analysis.
Project description:Here we report that the transcription factor cyclic AMP–responsive element–binding protein H (CREB-H, encoded by CREB3L3) is required for the maintenance of normal plasma triglyceride concentrations. CREB-H–deficient mice showed hypertriglyceridemia secondary to inefficient triglyceride clearance catalyzed by lipoprotein lipase (Lpl), partly due to defective expression of the Lpl coactivators Apoc2, Apoa4 and Apoa5 and concurrent augmentation of the Lpl inhibitor Apoc3. We identified multiple nonsynonymous mutations in CREB3L3 that produced hypomorphic or nonfunctional CREB-H protein in humans with extreme hypertriglyceridemia, implying a crucial role for CREB-H in human triglyceride metabolism.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), but its physiological role in a cell-type-specific manner remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Mechanistically, our data demonstrate a critical requirement of Sel1L for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Further biochemical analyses revealed that Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and prone to the formation of protein aggregates, which are degraded by autophagy-mediated degradation. The Sel1L-mediated control of LPL secretion is seen in other LPL-expressing cell types as well such as cardiac muscle and macrophages. Thus, our study reports a novel role of Sel1L in LPL secretion and systemic lipid metabolism.
Project description:LPL co-deregulated genes after LPL specific siRNA knock-down In chronic lymphocytic leukemia (CLL), lipoprotein lipase (LPL) mRNA overexpression is an established poor prognostic marker, its function, however, is poorly understood. Measuring extracellular LPL enzymatic activity and protein, we found no difference between levels in CLL patients and those of controls, both before and after heparin treatment in vivo and in vitro. Investigating LPL knock down effects, we determined five potential downstream targets, of which one gene, STXBP3, reportedly is involved in fatty acid metabolism. While possibly reflecting an epigenetic switch towards an incorrect transcriptional program, LPL overexpression by itself does not appear to significantly influence CLL cell survival.
Project description:LPL co-deregulated genes after LPL specific siRNA knock-down In chronic lymphocytic leukemia (CLL), lipoprotein lipase (LPL) mRNA overexpression is an established poor prognostic marker, its function, however, is poorly understood. Measuring extracellular LPL enzymatic activity and protein, we found no difference between levels in CLL patients and those of controls, both before and after heparin treatment in vivo and in vitro. Investigating LPL knock down effects, we determined five potential downstream targets, of which one gene, STXBP3, reportedly is involved in fatty acid metabolism.
Project description:Specific expression lipoprotein lipase in adipose by the adiponectin promoter alters the transcriptional response of adipose tissue to an acute high fat diet challenge. We include transcriptional changes in adipose tissue from 12 littermate control and 12 AdipoQ-LpL mice. Gene expression and alternative splicing were analyzed.