Project description:Salvia is an important genus from the Lamiaceae with approximately 1000 species distributed globally. Several Salvia species are commercially important because of their medicinal and culinary properties. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus.
2013-07-31 | GSE39403 | GEO
Project description:DNA sequencing data of Salvia honania
Project description:Salvia is an important genus from the Lamiaceae with approximately 1000 species distributed globally. Several Salvia species are commercially important because of their medicinal and culinary properties. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia Subtracted Diversity Array (SDA), a Suppression Subtractive Hybridization (SSH) was performed between a pool of ten Salvia species and a pool of non-angiosperm and angiosperms (excluding the Lamiaceae) to selectively isolate Salvia-specific sequences. A total of 285 subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating closely related species of S. officinalis and S. miltiorrhiza and was also able to reveal genetic relationships consistent with geographical origins. Species-specific features were also found for S. elegans, S. officinalis, S. sclarea, S. przewalskii and S. runcinata.
Project description:To identify salvia chinensia benths induced transcriptional changes in triple negative breast cancer cell, RNA-sequencing of MDA-MB-231 cells after salvia chinensia benths treantmnent was performed. Differential gene expression analysis resulted in 7582 differentially expressed genes.
Project description:As a sister genus to Taxus, Pseudotaxus holds significant importance for studying the origin and evolution of the taxane biosynthesis pathway. However, the reference genome of P. chienii, the sole species of Pseudotaxus, is not yet available. We have completed a chromosome-level genome assembly of P. chienii, with a total length of 15.6 Gb. P. chienii possesses only a partial pathway for Taxol biosynthesis, which terminates before the enzyme taxane 2α-O-benzoyl transferase (TBT), a crucial enzyme responsible for the production of 10-deacetylbaccatin III. With the emergence of the Taxus genus, the limitation posed by TBT is overcome, allowing for the extension of the existing taxane biosynthesis pathway into a complete Taxol biosynthesis pathway. Protein structure analysis revealed that the structure of metal ion catalysis sites in taxadiene synthase (TS) is conserved across the Pseudotaxus and Taxus genera, providing potential sites for enhancing TS activity through enzyme engineering. This comparative genomic analysis contributes to our understanding of the origin and evolution of taxane biosynthesis within the Taxaceae family.