Project description:Following an infection, CD4+ lymphocytes can differentiate into long-lived memory T cells, some of which circulate through the secondary lymphoid organs (SLOs) while a population lodges in non-lymphoid tissues. While CD4+ T cells in SLOs have been examined, the developmental origins and transcriptional regulation of tissue-resident memory T cells (TRM) remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profile of virus-specific CD4+ TRM in the small intestine (SI) following acute lymphocytic choriomeningitis virus (LCMV) infection. LCMV-specific CD4+ TRM at day 7 of infection shared a gene-expression program and chromatin profile with TH1 cells and progressively acquired a mature TRM program by day 21 memory time point, supporting a developmental relationship between TRM and TH1 subsets. Furthermore, we demonstrated that TRM cells expressed genes associated with both effector and memory T cell fates, including the transcriptional regulators Blimp1, Id2, and Bcl6 which were necessary for CD4+ TRM differentiation. TH1-associated Blimp1 and Id2 were both required for early TRM formation, while TFH-associated Bcl6 initially inhibited TRM differentiation but was critical for development of long-lived TRM cells. Our results identify new significance for TFs previously associated with circulating CD4+ T cell populations and their roles in driving SI CD4+ TRM differentiation.
Project description:Following an infection, CD4+ lymphocytes can differentiate into long-lived memory T cells, some of which circulate through the secondary lymphoid organs (SLOs) while a population lodges in non-lymphoid tissues. While CD4+ T cells in SLOs have been examined, the developmental origins and transcriptional regulation of tissue-resident memory T cells (TRM) remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profile of virus-specific CD4+ TRM in the small intestine (SI) following acute lymphocytic choriomeningitis virus (LCMV) infection. LCMV-specific CD4+ TRM at day 7 of infection shared a gene-expression program and chromatin profile with TH1 cells and progressively acquired a mature TRM program by day 21 memory time point, supporting a developmental relationship between TRM and TH1 subsets. Furthermore, we demonstrated that TRM cells expressed genes associated with both effector and memory T cell fates, including the transcriptional regulators Blimp1, Id2, and Bcl6 which were necessary for CD4+ TRM differentiation. TH1-associated Blimp1 and Id2 were both required for early TRM formation, while TFH-associated Bcl6 initially inhibited TRM differentiation but was critical for development of long-lived TRM cells. Our results identify new significance for TFs previously associated with circulating CD4+ T cell populations and their roles in driving SI CD4+ TRM differentiation.
Project description:Following an infection, CD4+ lymphocytes can differentiate into long-lived memory T cells, some of which circulate through the secondary lymphoid organs (SLOs) while a population lodges in non-lymphoid tissues. While CD4+ T cells in SLOs have been examined, the developmental origins and transcriptional regulation of tissue-resident memory T cells (TRM) remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profile of virus-specific CD4+ TRM in the small intestine (SI) following acute lymphocytic choriomeningitis virus (LCMV) infection. LCMV-specific CD4+ TRM at day 7 of infection shared a gene-expression program and chromatin profile with TH1 cells and progressively acquired a mature TRM program by day 21 memory time point, supporting a developmental relationship between TRM and TH1 subsets. Furthermore, we demonstrated that TRM cells expressed genes associated with both effector and memory T cell fates, including the transcriptional regulators Blimp1, Id2, and Bcl6 which were necessary for CD4+ TRM differentiation. TH1-associated Blimp1 and Id2 were both required for early TRM formation, while TFH-associated Bcl6 initially inhibited TRM differentiation but was critical for development of long-lived TRM cells. Our results identify new significance for TFs previously associated with circulating CD4+ T cell populations and their roles in driving SI CD4+ TRM differentiation.
Project description:Following an infection, CD4+ lymphocytes can differentiate into long-lived memory T cells, some of which circulate through the secondary lymphoid organs (SLOs) while a population lodges in non-lymphoid tissues. While CD4+ T cells in SLOs have been examined, the developmental origins and transcriptional regulation of tissue-resident memory T cells (TRM) remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profile of virus-specific CD4+ TRM in the small intestine (SI) following acute lymphocytic choriomeningitis virus (LCMV) infection. LCMV-specific CD4+ TRM at day 7 of infection shared a gene-expression program and chromatin profile with TH1 cells and progressively acquired a mature TRM program by day 21 memory time point, supporting a developmental relationship between TRM and TH1 subsets. Furthermore, we demonstrated that TRM cells expressed genes associated with both effector and memory T cell fates, including the transcriptional regulators Blimp1, Id2, and Bcl6 which were necessary for CD4+ TRM differentiation. TH1-associated Blimp1 and Id2 were both required for early TRM formation, while TFH-associated Bcl6 initially inhibited TRM differentiation but was critical for development of long-lived TRM cells. Our results identify new significance for TFs previously associated with circulating CD4+ T cell populations and their roles in driving SI CD4+ TRM differentiation.
Project description:Gene expression data from wild-type and Bcl6-/- naive CD4 T cells In order to find genes regulated by Bcl6 in follicular helper T cells Naïve CD4 T cells were sorted from wild-type (WT) and T cell-specific conditional Bcl6-/- (KO) mice-- 8 samples, 4 WT and 4 KO
Project description:Gene expression data from wild-type and Bcl6-/- naive CD4 T cells In order to find genes regulated by Bcl6 in follicular helper T cells Naïve CD4 T cells were sorted from wild-type (WT) and T cell-specific conditional Bcl6-/- (KO) mice-- 8 samples, 4 WT and 4 KO
Project description:CD4 T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for longlived antibody responses. However, it remains unclear whether there are CD4+ memory T cells committed to the Tfh lineage after antigen clearance. Using adoptive transfer of antigen-specific memory CD4+ subpopulations (based on CXCR5 and Ly6c expression)in the LCMV infection model, we found that there are distinct memory CD4+ T cell populations with commitment to the Tfh and Th1 lineages. Our conclusions are based on gene expression profiles, epigenetic studies and phenotypic and functional analysis. The gene expression profiles of virus-specific CD4 T cell subets at effector and memory stages is presented here. The SMARTA TCR transgenic / adptive transfer system was used to identify and sort subsets of antigen-specific CD4 T cells (based on their expression of Ly6c and CXCR5) elicited after acute infection with LCMV (Arm).
Project description:Population gene expression of effector CD4+ T cells WT, Bcl6-deficient , Blimp1-deficient or Bcl6 Blimp1-deficient was determined by RNAseq after LCMV Armstrong infection