Project description:The nematode Caenorhabditis elegans has evolutionarily conserved EV signaling pathways. In this study, we apply a recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of EVs from C. elegans. Our experiments uncovered diverse coding and non-coding RNA transcripts as well as protein cargo types commonly found in human EVs.
Project description:Natural genetic variation is the raw material of evolution and influences disease development and progression. To analyze the effect of the genetic background on protein expression in the nematode C. elegans (Caenorhabditis elegans), the two genetically highly divergent wild-type strains N2 (Bristol) and CB4856 (Hawaii) were compared quantitatively. In total, we quantified 3,238 unique proteins in three independent SILAC (stable isotope labeling by amino acids in cell culture) experiments. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress response pathways.