Project description:Question Addressed: Does gene expression change in the buccal mucosa of Lymphocryptovirus (LCV) infected animals when they are chronically infected with Simian immunodeficiency virus (SIV)? Oropharyngeal mucosal tissue samples were collected from rhesus macaques. A pooled common reference was used for all hybridizations. This reference was composed of RNA harvested from rhesus macaques not infected with either LCV or SIV. Infection: Animals were infected with SIV and/or LCV
Project description:A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. Microarrays were used to characterize changes in gene expression in the tongue mucosa that occur during chronic SIV infection. Dorsal tongue tissues from healthy uninfected macaques and macaques with chronic stage SIV infection were used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing.
Project description:A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. Microarrays were used to characterize changes in gene expression in the dorsal tongue epithelium that occur during chronic SIV infection. Epithelial cells were laser microdissected from dorsal tongue tissue sections from healthy uninfected macaques and macaques with chronic stage SIV infection and used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Rhesus macaques vaccinated by rhesus cytomegalovirus vectors expressing simian immunodeficiency virus proteins (RhCMV/SIV) activate gene expression signature associated with IL15. To examine the gene expression signature activated by IL15, we performed longitudinal examinations of rhesus macaques during IL15 treament.
Project description:A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. Microarrays were used to characterize changes in gene expression in the dorsal tongue epithelium that occur during chronic SIV infection.
Project description:A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. Microarrays were used to characterize changes in gene expression in the tongue mucosa that occur during chronic SIV infection.
Project description:Molecular basis for CNS dysfunction in simian immunodeficiency virus-infected rhesus monkeys. We used microarrays to identify differentially expressed genes in chronic simian immunodeficiency virus-infected rhesus monkeys. Frontal lobe samples were obtained from control and SIV infected animals for RNA extraction and hybridization on Affymetrix microarrays. We sought to better understand the gene that changes in gene expression with SIV infection in the frontal lobe.
Project description:Rhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef¯ simian immunodeficiency virus (Rev-Ind Nef¯SIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges Blood PBMC Time after SIV infection: 2 weeks post SIV infection Infection:Rev-Ind Nef¯SIV
Project description:B-cell receptor (BCR) repertoire analysis of simian immunodeficiency virus (SIV) infected Rhesus Macaques by deep sequencing of immunoglobulin heavy chain variable region.