Project description:Very little is known about miRNAs found in breastmilk cells, which also reflect the cells of the lactating mammary epithelium. Our hypothesis is that breastmilk cells are richer in miRNA compared to other milk fractions, such as skim milk. Further, the effects of milk removal by the infant on milk cell miRNA content and/or composition have not been investigated. Breastmilk cells conserved higher miRNA content than previously published lipid and skim fractions of breastmilk as well as other known sources of miRNA in humans. Specifically, 1,467 known mature miRNAs were identified and a further 1996 novel miRNAs, of which 89 were highly expressed. As previously shown, post-feed milk contained more cells than pre-feed milk, and the same was observed for miRNA content. However, no statistically significant difference was found in the expression of the total known and novel miRNAs between pre- and post-feed milk (p=0.76), although 27 known miRNAs and 1 novel miRNA were higher expressed in post-feed milk. As expected, samples richer in viable cells contained more known miRNAs (p = 0.01). Functional analysis of the top 10 most highly expressed known miRNAs showed that they may be potentially involved in crucial roles for the infant, including body fluid balance, thirst, appetite, immune responses, and development. In conclusion, breastmilk is highly rich in miRNA which may play important functions in the breastfed infant and the lactating breast. Milk removal by the infant can influence the total miRNA content of breastmilk, similar to its cell and fat content, but the miRNA composition remains constant
Project description:Breastfeeding provides important immunological benefits to the neonate, but how different immunoactive components in breastmilk contribute to immunity remains poorly understood. Here, we characterized human breastmilk T cells using single cell RNA sequencing and flow cytometry. Breastmilk contained predominantly memory T cells with immune response signaling, proliferation and an effector Th1/cytotoxic profile with high cytokine production capacities. High activation markers were balanced by an enriched Treg population and immune regulatory markers in conventional memory T cells. Gene and surface expression of tissue-residency markers indicated that breastmilk T cells represent tissue-adapted rather than circulatory T cells. In addition, breastmilk T cells had a broad homing profile and higher activation markers in these migratory subsets. The partly overlapping transcriptome profile between breastmilk and breast tissue T cells, particularly cytotoxic T cells, might support a role in local immune defense in the mammary gland. However, unique features of breastmilk, such as regulatory T cells, might imply an additional role in neonatal immune defense. We found some correlations between the breastmilk T-cell profile and clinical parameters, most notably with maternal and household factors. . Together, our data suggest that breastmilk contains an adapted T cell population that exerts their function in specific tissue-sites.
Project description:We report here the adipocyte-specific ablation of Tsc1 and its affects on lactation and mammary gland function. In this dataset, mammary glands from wild-type and adipocyte Tsc1 knockout mice were isolated during lactation and analysed by RNAseq. Deletion of Tsc1 is predicted to activate mTORC1 in both peripheral and mammary adipocytes. This study demonstrates that deletion of Tsc1 in adipocytes changes mammary gland histology, and function resulting in changes to breastmilk composition.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed cohousing experiments to test if Paneth cell phenotype is horizontally transmissible as is microbiota. Atg16l1 T300A and littermate controls that were exposed to cigarette smoking were used as microbiota donors, and these donor mice were exposed to smoking for 2 weeks prior to cohousing. Separate groups of Atg16l1 T300A and littermate controls that were not exposed to cigarette smoking were used as microbiota recipients. The microbiota recipients were co-housed with microbiota donors of the same genotype for 4 weeks, during this period the donors continued to be exposed to cigarette smoking. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. At the end of the experiment, the fecal microbiota composition was analyzed by 16S rRNA sequencing.
Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.
Project description:Persistent mucosal inflammation and microbial infection are characteristic of Chronic Rhinosinusitis (CRS). Though mucosal microbiota dysbiosis is a characteristic feature of other chronic inflammatory diseases, the relationship between sinus microbiota composition and CRS is unknown. Here we demonstrate, using comparative microbiome profiling of a cohort of CRS patients and healthy subjects, that the sinus microbiota of CRS patients exhibit significantly reduced bacterial diversity. Characteristic of this community collapse is the depletion of multiple, phylogenetically distinct, Lactic Acid Bacteria and the concomitant increase in relative abundance of a single species, Corynebacterium tuberculostearicum. Recapitulating the conditions observed in our human cohort in a murine model confirmed the pathogenic potential of C. tuberculostearicum and the critical necessity for a replete mucosal microbiota to protect against this species. Moreover, we provide evidence that Lactobacillus sakei, identified from our comparative microbiome analyses as a potentially protective species, affords defense against C. tuberculostearicum sinus infection, even in the context of a depleted sinus bacterial community. These studies demonstrate that sinus mucosal health is highly dependent on the composition of the resident microbiota, and identifies a new sino-pathogen and a strong bacterial candidate for therapeutic intervention. A total of 14 samples were profiled for microbiome composition: 7 from non-sinusitis patients, and 7 from patients with clinically diagnosed chronic sinusitis.
Project description:We found that low protein diet consumption resulted in decrease in the percentage of normal Paneth cell population in wild type mice, indicating that low protein diet could negatively affect Paneth cell function. We performed fecal microbiota composition profiling. Male mice were used at 4-5 weeks of age. Fecal samples were collected for microbiome analysis.
Project description:The aim of this study is to characterise and compare the composition of the microbiota from sputum samples of cystic fibrosis sufferers from different centres. These data are part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.