Project description:We compare fore- and mid-brain transcriptomes of reproductive males in monogamous and non-monogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.
Project description:Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And why are certain species particularly susceptible to the impacts of Bd? Here we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely-related endangered frog species (Rana muscosa and Rana sierrae) and analyze whole genome expression profiles from frogs in controlled Bd-infection experiments. We integrate the Rana results with a comparable dataset from a more distantly-related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.
Project description:Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And why are certain species particularly susceptible to the impacts of Bd? Here we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely-related endangered frog species (Rana muscosa and Rana sierrae) and analyze whole genome expression profiles from frogs in controlled Bd-infection experiments. We integrate the Rana results with a comparable dataset from a more distantly-related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs. A total of five (12-plex) chips were analyzed from 60 samples comprising 2 conditions (control and infected), 3 tissues (skin, liver and spleen) and 2 timepoints (early and late). Three biological replicates were used for each condition and tissue at each time point. Twentyfour arrays were analyzed for skin samples, 24 for liver, and 12 for spleen. The same dye, Cy5, was used for all samples.
Project description:Along with the prevalence of edible frog farming in China, the outbreak of a deadly infectious frog diseased, called frog meningitis (or cataracts and torticollis), has increased in frequency and geographical range dramatically. More than 10 bacterial species, belonging to 8 genera, has been reported as its potential pathogens. Diseased frogs typically manifest as torticollis, cataracts, edema and finally death, resulting in huge economic loss. Currently, the pathogenesis of this disease has not been investigated systematically. Here, we summarized the pathological stages of infected black-spotted frogs (Pelophylax nigromaculata) in Sichuan province according to their symptoms, typically progressing of pathological stage with only torticollis to stage with both torticollis and cataracts. On the basis, we analyzed the pathogenesis by a combination of comparative environmental analysis, microbiomics and transcriptomics. Results showed that more severely infected frog ponds tended to have lower water alkalinity. Elizabethkingia miricola was the only bacteria, whose abundance was positively correlated with the disease degree, and it has absolute dominance in the eyeball and brain of some torticollis-cataracts frogs. E. miricola and several other bacterial species, which belonged to pathogenic genera of meningitis, might be constitutively existed in the resident microbiome in frogs or their environment. Activations of infectious processes and immune responses related pathways were the major difference between health and diseased frogs at transcriptional level. Despite transcriptional activation of immunoglobulins was observed in both torticollis-only and torticollis-cataracts frogs, transcriptional activation of innate immune system (including MHC, toll-like receptor, and cathelicidins) in brain, inflammation system (including interleukins and receptors) in brain, and acute phase proteins (including transferrins and fibrinogens) in both liver and brain was only observed in torticollis-cataracts frogs. Activation of inflammation and the resulting higher vascular permeability in torticollis-cataracts frogs could explain the severe brain infection, cooccurrence of torticollis and cataracts, and systemic edema in torticollis-cataracts frogs. In addition, meningitis could also result in reduction in energy production in liver, and this was more severe in torticollis-cataracts frogs. In conclusion, our results suggested environment might have a role in susceptibility of frog meningitis. E. miricola was the most likely pathogen of meningitis of black-spotted frogs in Sichuan. Refer to the pathogenesis of human meningitis, excessive inflammation likely played a critical role in the progress of frog meningitis, and its resulted sepsis and organ failure might be the direct cause of infected frogs.
Project description:The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.
Project description:Leptin binding to the leptin receptor (LepR) causes rapid signaling to the nucleus. We investigated the early (2 hr) transcriptional response to acute leptin injectio (intracerebroventricular) in the preoptic area/hypothalamus/pituitary of juvenile Xenopus laevis frogs. Frogs were given i.c.v. injections of 0.6% saline or recombinant X. laevis leptin (rxLeptin; 20 ng/g BW) and 2 hrs later killed and the preoptic area/hypothalamus/pituitary dissected.